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Mode instability in one-dimensional anharmonic lattices: Variational equation approach

K. Yoshimura*
Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-8501, Japan

~Received 20 September 1996; revised manuscript received 1 September 1998!

The stability of normal mode oscillations has been studied in detail under the single-mode excitation
condition for the Fermi-Pasta-Ulam-b lattice. Numerical experiments indicate that the mode stability depends
strongly onk/N, wherek is the wave number of the initially excited mode andN is the number of degrees of
freedom in the system. It has been found that this feature does not change whenN increases. We propose an
average variational equation — approximate version of the variational equation — as a theoretical tool to
facilitate a linear stability analysis. It is shown that this strongk/N dependence of the mode stability can be
explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional
approximation of the average variational equation, which approximately describes the time evolution of varia-
tions in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation
demonstrates that the parametric instability mechanism plays a crucial role in the strongk/N dependence of the
mode stability.@S1063-651X~99!03003-2#

PACS number~s!: 45.05.1x, 05.45.2a, 05.20.2y
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I. INTRODUCTION

The statistical mechanics is established on the assump
that every system will settle in an equilibrium state. On
dimensional anharmonic lattices form one of simple dyna
cal models to check this assumption. The study of the sta
ity properties of nonequilibrium motion exhibited by on
dimensional anharmonic lattices was initiated by Fer
Pasta, and Ulam@1# to numerically check whether the a
sumption is satisfied. They chose an initial condition
from equilibrium, giving all energy to the lowest frequenc
normal mode, and then numerically integrated the equat
of motion, expecting that chaotic energy exchange am
the normal modes was occurring because of anharmon
of the lattice and the system was quickly relaxing to an eq
librium state characterized by energy equipartition. Ho
ever, it is well known that evident relaxation to the equili
rium state did not occur within their observation time sc
but quasi-periodic normal mode oscillation including only
few low frequency modes was observed. Their numer
experiments suggested that nonequilibrium motions can
for a reasonably long time in one-dimensional anharmo
lattices.

Since the appearance of their ground-breaking wo
many studies have been carried out to understand the dyn
ics of such systems@2–14#. It is clarified that there is a
certain energy threshold for a transition from weakly
strongly chaotic motion and the system relaxes to the e
librium state in a small time scale when energy increa
well above the threshold. Recently, a new interpretation
the energy threshold was proposed@11,12# and detailed study
of the chaoticity transition at the threshold was done by
ing the Riemannian geometric description of Hamiltoni
chaos@15–18#. However, it is not still clear how the time
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scale or the stability of nonequilibrium motions depends
initial conditions.

The simplest situation arising in the study of the stabil
properties of nonequilibrium motions in one-dimensional a
harmonic lattices is that involving only a single-mode ex
tation or a narrow-packet excitation. In such a situation, o
a single normal mode of some wave numberk or a wave
packet of small sizedk with mean wave numberk (dk/k
!1) is initially excited. For a system subjected to such i
tial conditions, the stability of this mode of wave numberk is
characterized by a time scale over which its energy is tra
ferred to the other modes. It is important for the purpose
understanding the dynamics of one-dimensional anharm
lattices to study how mode stability depends on the wa
numberk in a system with simple initial conditions of thi
form. However, even this simple stability problem is not y
fully understood and in fact the mechanism underlying
wave-number dependence of the mode stability has not
been described nor even identified.

There are only a few works that study the above m
tioned problems. Izrailev and Chirikov applied the resonan
overlap criterion@3# ~see also Ref.@19#! and determined the
chaoticity limit, which is the energy density threshold disti
guishing weakly and strongly chaotic motions, as a funct
of the wave numberk for the Fermi-Pasta-Ulam~FPU! b
lattice. They concluded that in the regime of smallk ~i.e., k
!N, where N is the system size! normal modes become
more unstable ask increases. Berman and Kolovskij approx
mated the FPU-b lattice using a nonlinear Schro¨dinger equa-
tion under the narrow packet conditiondk/k!1 and deter-
mined the chaoticity limit as a function ofk @4#. They found
that in the regimeN2k!N, normal modes become mor
stable ask increases. These two works provide qualitati
results on the wave-number dependence of the mode st
ity, and their theoretical analyses give an indication of t
possible underlying mechanism.

In a previous paper, we obtained quite different results
the FPU-b lattice using both theoretical and numeric
analysis@20#. This study, however, was restricted to the sy

-4,
-
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3642 PRE 59K. YOSHIMURA
tem of sizeN5128. We found that mode stability intricatel
depends on the wave numberk of the initially excited mode,
contrary to the simplek dependence reported in the tw
above-mentioned works. Our results demonstrate that the
stability of the normal mode is enhanced intermittently
some specific wave-number ranges. It is also demonstr
that normal modes possessing wave numbers within a ce
range are extremely stable even at high energy density.
present paper reports further study on these phenom
which is mainly addressed to two problems:~i! identifying
the mechanism causing the strong wave-number depend
of the mode stability, and~ii ! determining the effect on this
strong wave-number dependence caused by an increa
the numberN of degrees of freedom.

We carried out numerical experiments withN in the range
128–512 to investigate the effect caused by an increaseN.
And, for the purpose of identifying the mechanism, we the
retically studied the mode stability using a linear stabil
analysis of the orbits that start from single-mode excitat
initial conditions for various values ofk. We approximate the
relevant orbits with a Jacobi elliptic function and propose
variational equation valid along the approximate orbits a
theoretical tool to facilitate the linear stability analysis. It
shown that the linear stability of the approximate orbits
closely related to the mode stability and it explains the stro
wave-number dependence of the mode stability quite w
Moreover, we carry out a detailed study on the mechan
responsible for the strong wave-number dependence. W
write the variational equation valid along the approxima
orbits in the normal mode coordinates and introduce a fo
mode approximation of it obtained by retaining only fo
mode components that are dominant in determining the
ear stability. We show that a parametric instability mech
nism of the four-mode variational equations is essentia
responsible for the enhancement of instability and the e
tence of the highly stable modes.

The present paper is organized as follows. In Sec. II,
describe the FPU-b model and define the stability of th
normal mode. The numerical method we employ to inve
gate the stability is also described. In Sec. III we report
results of numerical experiments showing the effects cau
by increasingN on the mode stability. In Sec. IV we unde
take a theoretical investigation of the mechanism respons
for the strong wave-number dependence of the mode st
ity through a linear stability analysis. Conclusions are
fered in Sec. V.

II. DYNAMICAL MODEL AND STABILITY OF NORMAL
MODE

In this section, we describe the FPU-b model, the normal
modes, and we define the stability of normal mode osci
tion. We also explain the manner in which this stability
numerically examined.

A. FPU-b model and normal mode

Our investigation is of the dynamical model described
the Hamiltonian
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H5
1

2 (
i 51

N21

pi
21(

i 51

N F1

2
~qi2qi 21!21

b

4
~qi2qi 21!4G .

~1!

This is referred to as the FPU-b model. This Hamiltonian
describes a one-dimensional anharmonic lattice with nea
neighbor interaction. The parameterb represents the nonlin
ear coupling strength. We will setb51 in later discussion.
We employ fixed-end boundary conditions, i.e.,q05qN50.
The equations of motion derived from the Hamiltonian~1!
are

d2qi

dt2
5qi 111qi 2122qi1b@~qi 112qi !

32~qi2qi 21!3#.

~2!

For convenience, we introduce normal mode coordina
The transformationq°Q defined by

qi5A2

N (
k51

N21

QksinS pk

N
i D ~ i 51,2, . . . ,N21!, ~3!

gives the normal modes of the corresponding harmonic s
tem. Here,Qk is the amplitude of thekth normal mode. The
characteristic frequency of thekth normal mode is given as

vk52sinS pk

2ND . ~4!

In terms of the normal mode coordinatesQ and their conju-
gate momentaP, the Hamiltonian~1! is rewritten as

H5 (
k51

N21

~ 1
2 Pk

21 1
2 vk

2Qk
2!1

b

8N

3 (
k1 ,k2 ,k3 ,k451

N21

vk1
•••vk4

Qk1
•••Qk4

D~k1 ,k2 ,k3 ,k4!,

~5!

whereD(k1 ,k2 ,k3 ,k4) represents the selection rule definin
the interaction among the normal modes. It is explicitly wr
ten as

D~k1 ,k2 ,k3 ,k4!

5d~k11k2 ,k31k4!1d~k11k3 ,k21k4!

1d~k11k4 ,k21k3!1d~k11k21k3 ,k4!

1d~k11k21k4 ,k3!1d~k11k31k4 ,k2!

1d~k21k31k4 ,k1!2d~k11k21k31k4,2N!

2d~k11k21k3,2N1k4!2d~k11k21k4,2N1k3!

2d~k11k31k4,2N1k2!2d~k21k31k4,2N1k1!,

~6!

where d is the Kronecker delta function. The equation
motion for thekth normal mode is
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d2

dt2
Qk1vk

2Qk1
b

2N

3 (
k1 ,k2 ,k351

N21

vkvk1
vk2

vk3
Qk1

Qk2
Qk3

D~k,k1 ,k2 ,k3!50.

~7!

As the stability of the normal mode is the main subject
the present study, we must be clear about how we define
term ‘‘stability.’’ The initial conditions considered in the
present study consist of a single-mode~or an almost single-
mode! excitation: at the initial time, a single normal mode
wave numberk is excited, and the amplitudes of the oth
modes are set to zero. Thus

Qi~0!5Q̇i~0!50 ~ iÞk!. ~8!

The nature of these initial conditions implies thatQi(t)
.0(iÞk) holds for a short period of timet,ts , wherets is
a time scale within which the single-mode oscillation of t
kth mode lasts without significant energy being lost to
other modes. The time scalets depends on the wave numb
k and the energy densitye, wheree is related to total energy
E ase5E/N. We define the stability of the mode in terms
ts : an increase ints corresponds to an increase in the no
mal mode stability. A method of estimatingts by numerical
experiments will be described.

If the approximationQi(t)50 (iÞk) is made in Eq.~7!,
the equation of motion for thekth normal mode~the mode
excited initially! is approximated as

d2

dt2
Qk1vk

2Qk1
3b

2N
vk

4Qk
350. ~9!

It is well-known that the solution of Eq.~9! may be written,
with the Jacobi elliptic function, in the form

Q̃k~ t !5aAN cn~st,km!, ~10!

where

a25
4km

2

3bvk
2~122km

2 !
, s25

vk
2

122km
2

, ~11!

and km is the modulus of the Jacobi elliptic function. Th
moduluskm is related to the energy densitye as

e5
2km

2 ~12km
2 !

3b~122km
2 !2

. ~12!

In phase space, the motion associated withQ̃k(t) defines
the periodic orbitG̃(t)5@ q̃(t),p̃(t)#, where the component
of q̃5(q̃1 , . . . ,q̃N21) are the positions obtained through th
transformation~3! as

q̃i5A2

N
Q̃ksinS pk

N
i D ~ i 51,2, . . . ,N21!, ~13!

and the components ofp̃5( p̃1 , . . . ,p̃N21) are the conjugate
momenta. SinceQ̃k(t) is an approximate rather than an exa
solution, the periodic orbitG̃(t) is also only approximate. In
f
he

e

-

t

this sense, we callG̃(t) a pseudoperiodic orbit. An orbit
starting from a single-mode excitation condition may st
close to such a pseudoperiodic orbit during a certain sh
period, after which it will begin to diffuse in phase space.
schematic illustration of a pseudoperiodic orbit is shown
Fig. 1. The length of the period is characterized byts ; that
is, ts is the time scale of the stability in phase space, o
which the true orbits remain ‘‘close’’ to the pseudoperiod
orbit.

B. Relaxation time

The time scalets is estimated by the numerical integra
tion of the equations of motion~2! to examine the stability of
the normal mode. In this subsection, we describe how
estimatets .

We define the harmonic energyEi of each normal mode
as

Ei~ t !5 1
2 @Q̇i

2~ t !1v i
2Qi

2~ t !#, ~14!

and the weightswi , which give the fraction of the total har
monic energy in each normal mode by

wi~ t !5
Ei~ t !

(
m51

N21

Em~ t !

. ~15!

Let us define the spectral entropyS(t) as @11#

S~ t !5 (
i 51

N21

2wi~ t !lnwi~ t !. ~16!

S(t) can be normalized as

h~ t !5
Smax2S~ t !

Smax2S~0!
, ~17!

whereSmax5 ln(N21). The functionh(t) is used to measure
the extent of the energy exchange among the normal mo
If there is no energy exchange among the normal mod
then S(t)5S(0), and h(t) remains unity. If energy ex-

FIG. 1. Schematic illustration of a pseudoperiodic orbit. T

actual orbitG(t) remains close to the pseudoperiodic orbitG̃(t) for
a certain period 0,t,ts . After this time it diffuses in phase space
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3644 PRE 59K. YOSHIMURA
change occurs,h(t) decreases;h(t)50 corresponds to the
state in which energy is equally shared among all the nor
modes. We define the relaxation timetR as the time at which
h(t) reaches a reference value of 0.6; i.e.,h(tR)50.6. The
time scalets can be estimated by calculating the relaxati
time tR defined above. We will use the inverse of the rela
ation time, 1/tR , as an instability indicator. The choice of th
reference value ofh(tR) is somewhat arbitrary. We note
however, that the results oftR are not significantly affected
by the choice of the reference value.

III. NUMERICAL EXPERIMENTS

We reported a strong wave-number dependence of
mode stability in our previous paper@20#. This finding was
made only with respect to an FPU-b lattice withN5128. As
mentioned in the Introduction, there is an open question c
cerning how the strong wave-number dependence of
mode stability is affected by an increase in the number
degrees of freedom.

We performed numerical experiments with different sy
tem sizesN in order to study theN dependence of the stabi
ity properties. The relaxation timetR has been calculated fo
various sets ofk/N and e. The calculation oftR was re-
stricted to initial excitations of modes possessing odd w
numbersk, because ifk is even the number of modes partic
pating in the energy exchange with the initially excit
mode, as determined by the selection rule~6!, depends onk,
while if k is odd, all the modes with odd wave number a
ways participate.

Numerical integration of the equations of motion~2!

FIG. 2. ~a! Inverse of the relaxation time, 1/tR , plotted as a
function of e andk/N. ~b! Contour plot of the same quantity. Th
number of degrees of freedom here isN5128. Arrows indicate the
peaks of 1/tR .
al
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e
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was performed by the leap-frog algorithm because of
symplectic nature and simplicity. Allow us to briefly com
ment on the reliability of the numerical integration. To e
amine this reliability, we have used the fact that only norm
modes of odd wave number are allowed to be excited w
the initially excited mode has an odd wave number. T
spectra of the harmonic energyEi were examined at the end
of some runs. We confirmed that only the odd modes w
excited, while the energy of the even modes was negligi
small. This fact supports the reliability of the numerical i
tegration.

Figures 2–4 display the inverse of the relaxation tim
1/tR plotted againstk/N and e. Figures 2–4 represent th
results forN5128, 256, and 512, respectively. The val
1/tR is presented in Figs. 2~a!, 3~a!, and 4~a!, and the contour
plots are given in Figs. 2~b!, 3~b!, and 4~b!. For a set ofk/N
ande, we carried out the numerical integration for two se
of initial conditions with different phases of the single-mo
excitation, one in which all the energy is contained in kine

form, i.e.,Qk(0)50, 1
2 Q̇k

2(0)5E, and one in which all the

energy is contained in potential form, i.e.,Q̇k(0)

50, 1
2 vk

2Qk
2(0)1(3b/8N)vk

4Qk
4(0)5E @cf. Eq. ~5!#. We

found no significant difference between the relaxation tim
tR for these two sets of initial conditions. We defined t
relaxation timetR for a given set ofk/N and e to be the
average of the values found for these two sets of initial c
ditions. As noted above, the choice of the reference value
h(tR) is somewhat arbitrary. We changed the referen
value in the range 0.4–0.7 and confirmed that the dep
dence of 1/tR on bothk/N ande is not significantly affected
by the choice of this reference value.

In the cases ofN5128, 256, and 512, it is clearly see
that the stability of the normal mode is intricately depend

FIG. 3. Same as Fig. 2 for the case ofN5256.
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PRE 59 3645MODE INSTABILITY IN ONE-DIMENSIONAL . . .
on the wave number. There is a particular interval of wa
number values in which 1/tR does not become large bu
remains remarkably small even at high energy dens
i.e., the modes in this interval are not destabilized by
increase in the energy density.$We note that in low energy
density regime, the values oftR for these modes are no
relatively long compared with those of the other modes@this
is consistent with Fig. 6~a!#.% This interval of particular sta-
bility is located neark/N.0.67. We refer to this as astabil-
ity band. Some peaks of 1/tR appear in ranges of wave num
bers situated below the stability band. That is, the instab
of the normal mode is enhanced intermittently in spec
ranges of values ofk/N corresponding to these peaks. W
refer to the lines corresponding to these peaks as aridge
structure. The peaks of 1/tR appear atk/N.0.50, 0.34, and
0.24. In the figures these peaks are indicated by the arro
which are positioned at the same values ofk/N. It should be
noted that the values ofk/N at which the stability band and
the peaks oftR are located are identical forN5128, 256,
and 512, showing no apparent dependence onN. These simu-
lation results indicate that the stability of the normal mo
depends onk/N, but not onk, and that the intricate depen
dence onk/N is relevant even in the thermodynamic lim
N→`.

The above numerical experiments dealt with the init
conditions for rigorous single-mode excitation. Norm
modes of even wave number are never excited under th
initial conditions. Therefore, the orbits are confined
the submanifold spanned by the odd modes’ coordinates
all time. We carried out an additional numerical experime
in order to confirm that the observed strong wave-num
dependence of mode stability is not caused by the confi

FIG. 4. Same as Fig. 2 for the case ofN5512. To enhance the
graphical presentation, averages of 1/tR taken over two neighboring
odd modes are plotted.
e
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ment of orbits on the submanifold. In the additional nume
cal experiment, a small amount of energy is initially plac
on the two even modes that are next to the principally
cited odd mode: the energy of the principally excited o
mode and the neighboring even mode are set to
31021E and 1022E at the initial, respectively. Norma
modes of even wave number are also excited under this
tial condition and therefore the orbit is not confined on t
submanifold.

Figure 5~a! shows 1/tR plotted againstk/N and e and
the contour plot is shown in Fig. 5~b!. The results are
averaged over two sets of initial conditions with differe
phases of the principally excited odd mode as in the p
vious numerical experiments, one in which all the ener
of the principally excited odd mode is contained in kine
form, and one in which it is contained in potential form
For both of the sets of initial conditions, small amounts
energy of the neighboring even modes are contained in
netic form.

The strong wave-number dependence of mode stabilit
clearly observed in the figure. Sinceh decreases faster unde
these sets of initial conditions than under the rigorous sing
mode excitation, the values of 1/tR are larger than those in
Figs. 2–4. However, the wave-number dependence of m
stability coincides with those shown in Figs. 2–4 complete
peaks of 1/tR , which are indicated by arrows, and stabili
band appear at the same values ofk/N. This result shows
that the strong wave-number dependence of mode stabili
not an artificial effect caused by the confinement of orbits
the submanifold.

FIG. 5. Same as Fig. 2 for the case that a small amoun
energy is initially placed on the two even modes next to the p
cipally excited odd mode. A system size isN5128.
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IV. THEORETICAL ANALYSIS

A. Average variational equation

In this subsection, we introduce anaverage variational
equation~AVE!, which we propose as a theoretical tool f
the stability analysis.

We defined the stability of the normal mode in terms ofts
in the previous section. The stability time scalets ~or tR) is
expected to be closely related to linear stability of an or
with the relevant initial condition: exponential divergence
nearby orbits may be regarded as evidence for chaotic s
ture of the neighborhood of the orbit in phase space. In g
eral, the presence of chaotic region in phase space is
pected to yield faster diffusion of the orbit, implying fast
energy exchange among the normal modes.

The close relation between the linear stability and the
bility time scale may be justified by the following conside
ation ~see Fig. 1!. Let P0 be an initial phase point of an orb
G(t) with single-mode excitation initial conditions~or almost
single-mode excitation initial conditions including small pe
turbations, as in the case of Fig. 5! and Pn ,(n51,2, . . . ) be
the phase points ofG(t) at timet5nT, whereT is the period
of the pseudoperiodic orbit. Consider the orbitG(t;P1)
which has the initial pointP1 at t50, i.e., G(t;P1)5G(t
1T). Since P1 is close to the initial pointP0 , the time
evolution of the difference betweenG(t) andG(t;P1) is ap-
proximately described by the variational equation. Therefo
the ratio d1 /d0 of distances, wheredi represents distanc
betweenPi andPi 11 , is approximately given by the growt
rate of a corresponding solution to the variational equat
for the time intervalT. Similarly, within the stability time
scale 0,t,ts , where di is not so large, the other ratio
di /d0 ,(i 52,3, . . . ) are also approximately given by th
growth rates for the time intervalsiT. The distance betwee
Pn and P0 measuring separation ofG(t) from P0 for time
interval nT is roughly estimated asd01d11•••1dn21 .
Therefore, larger growth rate of the solution to the var
tional equation implies faster separation of the orbit from
initial phase point. This consideration may support the cl
relation between the linear stability and the stability tim
scale.

As mentioned above, it is natural to consider the line
stability. Linear stability is examined by means of the var
tional equations which are obtained by linearizing the eq
tions of motion~2!. The variational equations are given
the vector form

d2j

dt2
1V„q~ t !…j50, ~18!

wherej represents variations in position,q(t) is the refer-
ence orbit generated by the equations of motion~2!, and
V„q(t)… is the (N21)3(N21) Hessian matrix for the po
tential function the elements of which are given by

@V„q~ t !…# i j 5H 213b@~qi2qi 11!21~qi2qi 21!2#, i 5 j ,

2123b~qi2qj !
2, i 5 j 61,

0 otherwise.
~19!
it
f
c-

n-
x-
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e,

n

-
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e
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Linear stability can be quantified by the exponential grow
rates of the solutionsj(t) of Eq. ~18!.

Since we are interested in the stability time scalets , ex-
ponential growth rates in the short period of timet,ts
~rather than through infinite time! are useful. This fact en-
ables us to simplify the variational equation~18!. Any orbits
starting with single-mode excitation initial conditions rema
close to the pseudoperiodic orbit fort,ts . In other words,
the pseudoperiodic orbit approximates, in an average se
the true orbit generated by the equations of motion~2! for the
short period of timet,ts . Therefore we replace the refe
ence orbitq(t) in Eq. ~18! by the pseudoperiodic orbitq̃(t)
defined by Eq.~13!. That is, the variational equation em
ployed for the theoretical analysis is

d2j

dt2
1V„q̃~ t !…j50. ~20!

We call this the ‘‘average variational equation.’’ All the e
ements of the matrixV„q̃(t)… are periodic sinceq̃(t) is a
periodic function.

According to Floquet theory, Eq.~20! can have a solution
that grows exponentially in time if the time evolution o
V„q̃(t)… is of a suitable nature. The largest exponent
growth ratel1 of the solution is useful to quantify the linea
stability and estimated by

l15 lim
t→`

1

t
ln

ij~ t !i
ij~0!i , ~21!

where iji is the Euclidean norm ofj. The quantityl1 is
called thelargest characteristic exponent~LCE!. We mea-
sure the linear stability byl1 for the purpose of understand
ing the intricate stability properties of the normal mode o
served in the numerical experiments.

In principle, the original variational equation~18! should
be used for linear stability analysis. However, it is not p
ticularly useful to obtain a theoretical understanding of t
essential mechanism which determines the stability prop
ties of the normal mode, because detailed behavior of
true orbit q(t) generated by the equation of motion~2! is
complicated and depends on each sampled reference orb
is necessary to make some approximation and simplifica
of the time dependence of the evolution matrixV„q(t)….
Therefore, from a theoretical point of view, it is important
replace the true orbitq(t) by the pseudoperiodic orbitq̃(t).
The AVE is more useful than the original variational equ
tion for the purpose of obtaining a theoretical understand
because of the simplification resulting from this replaceme
as will be shown, this replacement, accompanied by furt
approximation, makes it possible to show that the parame
instability mechanism plays a crucial role in determining t
stability properties of the normal mode.

The AVE is, of course, not a variational equation in t
usual sense. Thus one might claim that the AVE is ina
equate and that the original variational equation must be u
for linear stability analysis. However, we will show that th
AVE is adequate to approximately describe linear stabi
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along the true orbits through a comparison between the
sults of the AVE and those of the original variational equ
tion.

B. Results of AVE analysis

We have numerically calculated the LCEl1 of the AVE
@Eq. ~20!# for various sets ofk/N ande. The AVE used for
the calculation corresponds to a lattice withN5128. The
results are shown in Fig. 6, where the LCE is plotted a
function of k/N and e, i.e., we considerl1(k/N,e). The
function l1(k/N,e) is represented in Fig. 6~a!, and the con-
tour plot is given in Fig. 6~b!. We also calculated the LCE
for a few values ofe, with larger system sizesN5256 and
512 in order to examine theN dependence of the LCE. Ther
was no apparentN dependence in the results: the LCE d
pends onk/N, but not onk. Thek/N dependence of the LCE
for N5256 and 512 was identical to that forN5128. This
observation is consistent with the results for 1/tR shown in
the previous section.

The plot of l1 shown in Fig. 6~a! is quite similar to the
plots of 1/tR shown in Figs. 2~a!, 3~a!, 4~a!, and 5~a!. In the
interval of the wave number corresponding to the stabi
band, located neark/N.0.67, l1 does not increase as th
energy density increases, but rather remains remark
small even in the high energy density regime. Some peak
l1 are also found in wave-number ranges below the stab
band. ~This is the ridge structure mentioned above.! Three
peaks ofl1 are clearly seen neark/N.0.50, 0.34, and 0.24

FIG. 6. ~a! LCE l1 of AVE plotted as a function ofe andk/N.
~b! Contour plot of the same quantity.
e-
-

a

-

y

ly
of
y

and additional peaks, which are very weak, may be perc
able in smaller wave-number ranges. These three peaks
pear at values of thek/N identical to those at which the
peaks of 1/tR are indicated in Figs. 2–5. The agreeme
between the AVE analysis and the numerical experime
establishes the close relation between the stability time s
tR and the linear stability along the pseudoperiodic orbit, a
indicates that the features observed in the numerical exp
ments, namely the stability band and the ridge structure,
be well understood in terms of the LCE.

We now compare the LCEl1 with the largest exponentia
growth ratel18 of the solution of the original variationa
equation in order to confirm that the AVE is adequate
approximately describing the linear stability of the true o
bits.

We first describe the method that numerically compu
l18 . The original variational equation used for the compa
son also corresponds to a lattice withN5128. The original
variational equation has 2(N21) independent solutions
since it is a (N21)-dimensional second-order differenti
equation. We can construct the 2(N21) independent solu-
tions j(n)(t)@n51,2, . . . ,2(N21)# if we assume their initial
conditions as

j i
~n!~0!5H 1, i 5n,

0, iÞn,
j̇ i

~n!~0!50 ~n51, . . . ,N21!,

~22!

and

j i
~n!~0!50, j̇ i

~n!~0!

5H 1, i 5n2~N21!

0, iÞn2~N21!
@n5N, . . . ,2~N21!#,

~23!

wherej i
(n)( i 51, . . . ,N21) is the i th element of the vector

j(n). For a given reference orbitq(t) calculated from Eq.~2!,
the time evolution of these 2(N21) solutions was numeri-
cally calculated according to Eq.~18!, and the calculation
was continued until the spectral entropyh(t) reached 0.8.
We denote the time at which the calculation was ended
t0 ; i.e., h(t0)50.8. It is reasonable to comparel1 with the
value l18 calculated for the period in which large-scale e
ergy exchange between the initially excited mode and
other modes does not take place, because the pseudope
orbit is considered to approximate the true orbit only for t
short period of time 0,t,ts . Therefore the reference valu
0.8 of h(t0) was chosen to be close to 1. We define t
matrix

R5S j1
~1!~t0! j1

~2!~t0! . . . j1
~2~N21!!~t0!

A A � A

jN21
~1! ~t0! jN21

~2! ~t0! . . . jN21
~2~N21!!~t0!

j̇1
~1!~t0! j̇1

~2!~t0! . . . j̇1
~2~N21!!~t0!

A A � A

j̇N21
~1! ~t0! j̇N21

~2! ~t0! . . . j̇N21
~2~N21!!~t0!

D ,

~24!
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from the solutionsj(n)(t0) at timet0 . The value ofl18 was
determined from the largest eigenvaluerR of the matrixR;
i.e., l185 lnurRu/t0. l18 determined by such a procedure d
pends on the reference orbitq(t) considered. We calculate
l18 according to the above procedure for ten different ref
ence orbits which were obtained by enforcing single-mo
excitation initial conditions with different phases. We th
averaged over the set of reference orbits.

Figures 7~a!–7~c! display l18 plotted againstk/N for e
50.1, 1.0, and 5.0, respectively.l18 is represented by the

FIG. 7. The largest exponential growth ratel18 of the original
variational equation vsk/N. LCE l1 ~ solid line ! is compared with
l18 . ~a! e50.1. ~b! e51.0. ~c! e55.0.
r-
e

solid circles with error bars, and the LCEl1 is also repre-
sented by the thin solid lines, where the error bars repre
standard deviations.

The results show good agreement betweenl1 and thel18 .
A small amount of discrepancy may be attributed to sm
amplitude oscillations of modes other than the initially e
cited one. Even in the early stage of time evolution of t
system, there occurs small-scale energy exchange betw
the initially excited mode and the other modes. The existe
of the small-amplitude oscillations of the other modes, wh
is neglected in the pseudoperiodic orbit approximation, m
be the reason for the difference in the value ofl1 andl18 . In
fact, the result fore50.1 shows very good agreement b
tweenl1 andl18 . This is, no doubt, due to the fact that th
energy exchange in this case of early time is smaller tha
the other two cases.

The plots ofl18 clearly exhibit the stability band structure
for values ofk/N corresponding to the stability band, bo
l18 andl1 remains small when the energy density increas
The ridge structure can also be found in the plots ofl18 .
Figure 7~a! clearly shows the peaks ofl18 at k/N.0.50 and,
though it is quite weak, also atk/N.0.34. In Fig. 7~b!, these
two peaks appear more clearly, while the peak atk/N
.0.24, as expected from the AVE analysis and the num
cal experiments, cannot be clearly discerned~it may be very
weak!. The peak atk/N.0.24 can be seen in Fig. 7~c!. We
have also computedl18 with the different reference value
h(t0)50.6, since the choice ofh(t0)50.8 is somewhat ar-
bitrary. Both the stability band and the ridge structure a
clearly seen in the results forh(t0)50.6 also, though the
agreement betweenl1 andl18 , as expected, becomes wors

The above comparison demonstrates that the AVE is
equate to approximately describe linear stability along
true orbits: i.e, the tangent properties of the pseudoperio
orbits are similar to those of the true orbits. It must be e
phasized that the contribution of the pseudoperiodic orbi
the time dependence of the evolution matrixV is dominant in
determining the linear stability of the true orbits with singl
mode excitation initial conditions.

Based on the AVE analysis, it can be concluded that
strong k/N dependence of the mode stability found in n
merical experiments, namely the stability band and the rid
structure, is explained by the nature of the linear stabi
along thepseudoperiodicorbit. In particular, the stability
band is characterized by a small exponential growth r
along this orbit.

C. Four-mode approximation of AVE

The validity of our use of the AVE was confirmed in th
above. We now proceed to carry out further theoretical stu
on the basis of the AVE in order to understand a part of
mechanism causing the strongk/N dependence of the mod
stability. In particular, we clarify the essential mechanis
causing the instability enhancement atk/N.0.5 and high
stability in the stability band.

In the previous subsections, we used the AVE and
original variational equation which are expressed in the
dinary coordinates because of convenience for numerical
culation: a large number of interaction terms appear in
original variational equation if it is written in the norma
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mode coordinates and it is cumbersome to calculate the
orbit in the normal mode coordinates by integrating Eq.~7!.
However, it is convenient to rewrite the AVE in the norm
mode coordinates for understanding the mechanism res
sible for the strongk/N dependence of the LCE. In this sub
section, we rewrite the AVE and make a further simplific
tion on it. We introduce the equations which are obtained
retaining only four important components in the AVE a
truncating the others.

The AVE @Eq. ~20!# is rewritten in the normal mode co
ordinates as

d2

dt2
ĵ i1v i

2ĵ i1
3b

2N
vk

2Q̃k
2 (

j 51

N21

v iv j ĵ jD~ i , j ,k,k!50,

~25!

wherek is the wave number of the initially excited mode a
ĵ i represents a variation in thei th normal mode amplitude
Qi . The functionD( i , j ,k,k) gives a coupling coefficien
between mode componentsĵ i and ĵ j .

We numerically integrate Eq.~25! and calculate the varia
tional vectorĵ which gives the LCE, in order to find out a s
of a small number of mode componentsĵ i which are impor-
tant for describing thek/N dependence of the LCE, esp
cially in the k/N range near the stability band (0.5,k/N
,0.9). We started the numerical integration with initial co

ditions ĵ i(0)50 and j̇̂ i(0)51/AN21, and converged the
vector ĵ(t) to that gives the LCE by iteratively normalizin
its norm. In the numerical calculation, we setN5128. Fig-
ures 8, 9, and 10 show the maximal values that are take
mode components of the vectorm, which is defined bym

FIG. 8. Maximal values of mode componentsm i plotted against
i for the case ofk565. The number of degrees of freedom here
N5128 ~a! e50.1. ~b! e51.0.
ue

n-

-
y

by

5 ĵ/i ĵi , as a function ofi for k565, 75, and 85, respec
tively. It is found in the figures that most ofm i are almost
equal to zero and only a small number of components t
nonnegligible values. This fact makes it possible to appro
mate the AVE by low-dimensional equations consisting o
few important mode components.

Figure 8 refers to the case ofk565 (k/N.0.51). The
normal mode ofk565 exhibits strong instability: a peak o
the LCE appears neark/N50.5 in Figs. 7~a! and 7~b!, there-
fore the LCE for this mode is relatively large for both of th
casese50.1 and 1.0. In Figs. 8~a! and 8~b!, it is found that
the mode components having nonnegligible values pos
their indices i close to the initially excited mode’s wav
numberk565 for bothe50.1 and 1.0. It should be note
that four mode components withi 560, 62, 64, and 66 take
large values in this case of large LCE. These four mo
components are coupled in Eq.~25! as follows: two compo-
nents ofi 564 and 66, whose indices are next to the initia
excited mode’s wave number, are directly coupled to e
other with nonzero coupling coefficientD51 and the other
two components ofi 562 and 60 are directly coupled toi
564 and 66 withD521, respectively

Figure 10 refers to the case ofk585 (k/N.0.66). The
normal mode ofk585 is a highly stable one: the LCE fo
this mode remains small even for the larger energy den
e51.0 as seen in Fig. 7~b!. In contrast to the case ofk
565, spectra ofm presented in Figs. 10~a! and 10~b! are
quite different. The mode components with indices close
k585 are almost equal to zero for both of the casese50.1
and 1.0. Two mode components with indices that are sy
metrically far fromk585 take large values: the componen
of i 569 and 101 are large fore50.1 and those ofi 567 and
103 for e51.0.

The normal mode ofk575 (k/N.0.59) is of intermedi-

FIG. 9. Same as Fig. 8 for the case ofk575. ~a! e50.1. ~b! e
51.0.
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ate stability. This mode is not involved in the peak of LC
appearing aroundk/N50.5 in Fig. 7~a! and thus the LCE for
this mode is not relatively large whene50.1. However, this
mode comes to be involved in the peak in Fig. 7~b! and the
LCE becomes relatively large whene51.0. Correspond-
ingly, the spectrum ofm changes between the case ofe
50.1 and 1.0, in Figs. 9~a! and 9~b!. Spectrum fore50.1 is
similar to those observed in Figs. 10~a! and 10~b!. The mode
components ofi 554 and 96, which are symmetrically fa
from the initially excited mode’s wave numberk575, are
large. In contrast to this, spectrum fore51.0 is similar to
those observed in Figs. 8~a! and 8~b!. It is seen that four
mode components ofi 530, 32, 74, and 76 take large va
ues fore51.0. These four mode components are coupled
the same manner as in the case ofk565: two mode compo-
nents ofi 574 and 76, which are next tok575, are directly
coupled to each other with the coupling coefficientD51 and
the other two mode components ofi 532 and 30 are directly
coupled toi 574 and 76 withD521, respectively. It should
be noted that these four mode components take large va
when the LCE is relatively large.

Several peaks of LCE seen in Figs. 6~a! and 6~b! may be
caused by some parametric instability mechanism beca
the AVE is a set of coupled Hill equations. The above o
servation shows that the LCE becomes large when the
mode components are dominant, while it cannot achiev
large value when the two mode components symmetric
far from k are dominant. Therefore, it is conceivable tha
parametric instability due to interaction among those fo
mode components yields a large value of LCE, playing
important role in causing the peak of LCE appearing n
k/N50.5. We show that an analysis on the basis of equat
consisting of the four dominant mode components can re
the mechanism underlying the strongk/N dependence o

FIG. 10. Same as Fig. 8 for the case ofk585. ~a! e50.1. ~b!
e51.0.
n
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LCE, i.e., the reasons why the LCE is maximized neark/N
50.5 and why the LCE is small neark/N50.67.

The indices of the four dominant mode components
given by i 5k21,k11,u2N23k11u, andu2N23k21u as a
function of the initially excited mode’s wave numberk. The
mode components ofi 5u2N23k11u and u2N23k21u are
directly coupled to the components ofi 5k21 and k11,
respectively. If we retain only these four mode compone
in Eq. ~25! then we have equations of the form

d2

dt2
ĵ i 1

1v i 1
2 ĵ i 1

1
3b

2N
vk

2Q̃k
2

3~2v i 1
2 ĵ i 1

1v i 1
v i 2

ĵ i 2
2v i 1

v i 3
ĵ i 3

!50,

d2

dt2
ĵ i 2

1v i 2
2 ĵ i 2

1
3b

2N
vk

2Q̃k
2

3~v i 1
v i 2

ĵ i 1
12v i 2

2 ĵ i 2
2v i 2

v i 4
ĵ i 4

!50,

d2

dt2
ĵ i 3

1v i 3
2 ĵ i 3

1
3b

2N
vk

2Q̃k
2~2v i 1

v i 3
ĵ i 1

12v i 3
2 ĵ i 3

!50,

~26!

d2

dt2
ĵ i 4

1v i 4
2 ĵ i 4

1
3b

2N
vk

2Q̃k
2~2v i 2

v i 4
ĵ i 2

12v i 4
2 ĵ i 4

!50,

where i 1 ,i 2 ,i 3 , and i 4 stand for k21,k11,u2N23k11u,
and u2N23k21u, respectively.

FIG. 11. The maximal exponential growth ratel of Eq. ~26!
plotted againstk/N. The number of degrees of freedom used
numerical calculation isN5128 ~a! e50.1. ~b! e51.0.
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We denote the maximal exponential growth rate of
solution to Eq.~26! by l. Figures 11~a! and 11~b! displayl
plotted againstk/N for e50.1 and 1.0, wherel is calculated
for N5128. The results are in good agreement with those
the LCE shown in Figs. 7~a! and 7~b! although there is a
difference in a range neark/N50.67, where the two mode
components with indices symmetrically far fromk are more
important than the four mode components included in
~26!. In Figs. 11~a! and 11~b!, l decreases ask/N increases
up tok/N.0.67, above which it increases again. This agr
ment demonstrates the validity of Eq.~26! in describing the
main feature ofk/N dependence of the LCE in the rang
0.5,k/N,0.9, apart from the difference observed in t
range where the two mode components are dominant. H
we note that another type of parametric instability among
mode components may have to be considered in the o
range ofk/N.

We also calculated the spectrum ofm and l for larger
system sizesN5256 and 512. It was observed that the sa
four mode components,k21,k11,u2N23k11u, and
u2N23k21u, have large values when the LCE is large. T
k/N dependence ofl is also in agreement with that of th
LCE obtained from the full-dimensional AVE in the rang
0.5,k/N,0.9. This fact indicates that the four-mode a
proximation, Eq.~26!, is valid for anyN.

We now proceed to clarify the essential parame
instability mechanism in Eq.~26! that causes the stron
k/N dependence ofl observed in Figs. 11~a! and
11~b!. The frequenciesv i 1

,v i 2
,v i 3

, and v i 4
are given

by v i 1
52sin@p(k21)/2N#, v i 2

52sin@p(k11)/2N#, v i 3
52sin(pu2N23k11u/2N), and v i 4

52sin(pu2N23k

21u/2N). It should be noted thatv i 1
.v i 2

.vk and v i 3
.v i 4

.v for large N, wherevk and v are defined byvk

52sin(pk/2N) and v52sin(pu2N23ku/2N). Therefore, we
can approximate asv i 1

5v i 2
5vk and v i 3

5v i 4
5v. This

approximation can be validated by a numerical calculation
Eq. ~26! with the approximationv i 1

5v i 2
5vk and v i 3

5v i 4
5v. If we make the above approximation, introduce

new time variablet5vkt, and rewrite the dependent var
ables byĵ1* , ĵ2* , ĵ3* , and ĵ4* in Eq. ~26!, then we obtain
the equations

d2

dt2
ĵ1* 1 ĵ1* 1

3

2
bf2~2ĵ1* 1 ĵ2* 2r ĵ3* !50,

d2

dt2
ĵ2* 1 ĵ2* 1

3

2
bf2~ ĵ1* 12ĵ2* 2r ĵ4* !50,

~27!

d2

dt2
ĵ3* 1r 2ĵ3* 1

3

2
bf2~2r ĵ1* 12r 2ĵ3* !50,

d2

dt2
ĵ4* 1r 2ĵ4* 1

3

2
bf2~2r ĵ2* 12r 2ĵ4* !50,

wherer is the ratio betweenv andvk defined by
e

f

.

-

re,
e
er

e

c

f

r 5
v

vk
5

sinS p

2U223
k

NU D
sinS pk

2ND , ~28!

and the functionf(t) is defined as

f~t!5
vk

AN
Q̃k~t/vk!5A cn@~116be!1/4t,km#, ~29!

wherekm is the modulus defined by Eq.~12! and the ampli-
tudeA is given by

A25
2

3b
~211A116be!. ~30!

The functionf does not depend on bothk andN.
If we introduce new variablesz15 ĵ1* 2 ĵ2* , z25 ĵ3*

2 ĵ4* , z35 ĵ1* 1 ĵ2* , and z45 ĵ3* 1 ĵ4* , then Eqs.~27! are
divided into two decoupled pairs of equations of the form

d2

dt2
z11z11

3

2
bf2~z12r z2!50,

~31!
d2

dt2
z21r 2z21

3

2
bf2~2r z112r 2z2!50,

and

FIG. 12. The maximal exponential growth ratel̄ of Eq. ~27! @or
Eq. ~31!# plotted as a function of the frequency ratior by solid line.

~a! e50.1. ~b! e51.0. In ~a!, an analytical estimationl̄e for l̄ and

a leading term in the expansion ofl̄e are also plotted by the dashe
line and dash-dotted line, respectively.
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d2

dt2
z31z31

3

2
bf2~3z32r z4!50,

~32!
d2

dt2
z41r 2z41

3

2
bf2~2r z312r 2z4!50.

We denote the maximal exponential growth rate of the so
tion to Eq. ~27! by l̄, which is related tol as l5vkl̄.
Equations~31! give the maximal exponential growth ratel̄.
We calculatedl̄ for various values ofr by numerically inte-
grating Eqs.~31!. Figures 12~a! and 12~b! show l̄ plotted
againstr for e50.1 and 1.0, respectively.l̄ shows a maxi-
mum at r .1 and decreases asr decreases.l̄ has a very
small value nearr 50. A strong parametric instability occur
nearr 51 while the parametric instability is suppressed n
r 50.

If r .0, k/N satisfies the relation

U223
k

NU.0. ~33!

from Eq. ~28!. Then, we obtain

k

N
.

2

3
. ~34!

And, if r .1, thenk/N satisfies the relation

U223
k

NU. k

N
. ~35!

One of the solutions to this equation is

k

N
.

1

2
. ~36!

The ratior is equal to 1 atk/N51/2 and decreases ask/N
increases up tok/N52/3, above which it increases agai
Therefore, it may be concluded that the change of the in
sity of parametric instability with varyingr causes the strong
k/N dependence ofl observed in Figs. 11~a! and 11~b!, and
hence that of the LCEl1 . Since the correspondence betwe
l1 and 1/tR has already been demonstrated, the parame
instability which strongly depends on the ratior provides the
essential mechanism responsible for the strongk/N depen-
dence of the stability time scaletR in the range 0.5,k/N
,0.9. As indicated by Eq.~34!, the four-mode parametric
instability is suppressed atk/N.0.67. Therefore, an instabil
ity caused by the interaction between the two mode com
nents symmetrically far fromk is dominant in the range nea
k/N50.67. However, it cannot give rise to a strong instab
ity even in a high energy density regime. This explains
appearance of the stability band atk/N.0.67. The enhance
ment of instability atk/N.0.5 is well explained by Eq.~36!.
This parametric instability mechanism of the four-mode a
proximation can explain also the fact that the mode stab
depends onk/N, but not onk, because the ratior is a func-
tion of k/N.
-

r

n-

ic

o-

-
e

-
y

For small energy densitye, we can solve Eq.~31! ana-
lytically by means of the averaging method@21#. The ana-
lytical results provide more information. From Eq.~29!, the
period of the functionf is given by

Tf5
4K~km!

~116be!1/4
5

4

~116be!1/4E0

p/2 du

A12km
2 sin2u

,

~37!

whereK(km) represents the elliptic integral with moduluskm
defined by Eq.~12!. The corresponding angular frequency

V5
2p

Tf
5

p~116be!1/4

2K~km!
. ~38!

Using the approximationf(t)5Acos(Vt), we bring Eq.
~31! to the form

d2

dt2
z11z1 1g@11cos~2Vt!#~z12r z2!50,

~39!
d2

dt2
z21r 2z21g@11cos~2Vt!#~2r z112r 2z2!50,

where the small parameterg is defined byg5(3/4)bA2. We
assume the solution to Eq.~39! in the form

z i5ai~t!sin~Vt!1bi~t!cos~Vt!, ~40!

dz i

dt
5Vai~t!cos~Vt!2Vbi~t!sin~Vt!, ~41!

where i 51,2. If we substitute Eqs.~40! and ~41! into Eqs.
~39! and average over the period@0,Tf#, we arrive at the
averaged equations of the form

d

dtS a1

b1

a2

b2

D 5
1

4VS 0 2D1a 0 3gr

22D1b 0 2gr 0

0 3gr 0 2D2a

2gr 0 22D2b 0
D S a1

b1

a2

b2

D ,

~42!

whereD1a , D1b , D2a , andD2b are defined as

D1a5V22~11 3
2 g!, D1b5V22~11 1

2 g!,
~43!

D2a5V22r 2~113g!, D2b5V22r 2~11g!.

The largest eigenvaluel̄e of the coefficient matrix in Eq.
~42! gives an approximate estimate ofl̄ for small energy
densitye. It can be explicitly obtained as

l̄e5
1

4V
@23~gr !222~D1aD1b1D2aD2b!12$~D1a13D2b!

3~D2a13D1b! ~gr !2 1 ~D1aD1b2D2aD2b!2%1/2#1/2 .

~44!



f

d
tic

i
de
ow

f

t o
an
b-
ur
he
s

th

W
p

ev
fo
o
d

lity
d
o

a-

-
e

n-
onic
-
that
n-
of
m-
ty
the

-
er
ed

re-
s.
ing
no

b-
of

ity

ear
e-

for
g

be-
tion
d on
e
er-
dic

m
y,
E,
im-
wo
ini-
are

ap-
r

the

e
e

PRE 59 3653MODE INSTABILITY IN ONE-DIMENSIONAL . . .
In Fig. 12~a!, l̄e is plotted as a function ofr by the dashed
line. l̄e is in good agreement withl̄ although a slight dif-
ference is found nearr 50, where the assumption Eqs.~40!
and~41! does not give a good approximation. From Eq.~38!,
the frequencyV can be expanded in powers ofe as

V511V1be1V2~be!21O~e3! ~45!

511 9
8 be2 621

256~be!21O~e3!. ~46!

And, using Eq.~30!, we can expand the parameterg as

g5 3
2 be2 9

4 ~be!21O~e3!. ~47!

Using Eqs.~45!, ~46!, and~47!, we obtain the expansion o
Eq. ~44!, which is valid whenr is not close to 1, to the
leading order as

l̄e5
1

8H 81

4
~8V123!

r 2

12r 2

2
1

2
~8V1

2116V2127!~8V123!J 1/2

~be!3/21O~e5/2!,

~48!

5
9

8H 3r 2

2~12r 2!
1

1

16J 1/2

~be!3/21O~e5/2!. ~49!

In Fig. 12~a!, the leading term in the expansion is plotte
againstr by the dash-dotted line for reference. This analy
expression clearly shows thatl̄e increases rapidly asr be-
comes close to 1.

The LCE is approximately related tol̄e as l1.vkl̄e in
the regions where the four-mode parametric instability
dominant, i.e., in the peaks of the LCE situated on both si
of the stability band. Therefore, the above expression sh
that the LCE increases in proportional toe3/2 in those re-
gions. It should be noted that the expansion coefficients oV
are contained in the leading term in Eq.~48!, particularly in
ther-dependent term. This implies that the frequency shif
the initially excited mode due to the nonlinearity plays
important role in thek/N dependence of the LCE and su
sequently in that of the mode stability, since the main feat
of the k/N dependence of the LCE is well described by t
four-mode approximation of the AVE. Therefore, one mu
take into account the frequency shift when studying
mode stability.

At the end of this section, we mention some remarks.
note that odd and even mode components are never cou
in Eq. ~25! because of the nature of the functionD. That is,
the tangent subspace of odd components and that of
components are completely separated. As mentioned be
orbits are constrained on the submanifold spanned by the
modes’ coordinates for all time under rigorous single-mo
excitation of an odd mode. Correspondingly, the stabi
time scaletR is related to the stability properties in the od
tangent subspace. In this case, parametric instability am
the four odd mode components ofi 5k22, k12, u2N
23k12u, and u2N23k22u provides the essential mech
s
s
s

f

e

t
e

e
led

en
re,
dd
e

ng

nism responsible for the strongk/N dependence oftR be-
cause the four-mode components ofi 5k21, k11,
u2N23k11u, and u2N23k21u are even. The same para
metric instability mechanism with ther-dependence can b
applied to this case also.

Strongk/N dependence of the mode stability is reaso
ably expected to be generic to a large class of anharm
lattice models~for instance, thef4 lattice, and the Lennard
Jones lattice in the case that the energy is small enough
the particles remain below the inflection point of the pote
tial! because the AVE is always in the form of a set
coupled Hill equations and parametric instability is the co
mon origin of instability. Since the parametric instabili
mechanism is associated with the detailed structure of
interaction rule among the normal modes, thek/N depen-
dence of the mode stability may be model dependent.

V. CONCLUSIONS

The stability of normal modes was studied for the FPUb
lattice. This stability depends intricately on the wave numb
k/N. We have found that the mode instability is enhanc
intermittently in some specific ranges ofk/N. In addition, we
have found that normal modes within the stability band
main extremely stable when the energy density increase

The numerical experiments we carried out, possess
system sizesN in the range 128–512, indicate that there is
apparentN dependence in the intricatek/N-dependence of
the mode stability. This fact coincides with the results o
tained by the analysis using the four-mode approximation
the AVE. Therefore, it is indicated that the intricate stabil
properties persist even in the thermodynamic limitN→`.

We investigated the mode stability by means of the lin
stability analysis of the relevant orbits. Close relation b
tween the stability time scaletR and the linear stability was
established. We proposed the AVE as a theoretical tool
stability analysis and confirmed its reliability by comparin
the largest exponential growth rates of the variations
tween the true orbits generated by the equations of mo
and the pseudoperiodic orbits. The stability analysis base
the AVE shows that the strongk/N dependence of the mod
stability found in the numerical experiments can be und
stood in terms of the linear stability along the pseudoperio
orbits.

In order to facilitate theoretical study of the mechanis
that causes the strongk/N dependence of the mode stabilit
we introduced the four-mode approximation of the AV
which was obtained by truncating the other modes less
portant. The four-mode approximation consists of the t
mode components the indices of which are next to the
tially excited mode’s wave number and the other two that
directly coupled to them through the interaction ruleD. The
frequencies of the former pair of mode components are
proximately equal tovk52sin(pk/2N) and those of the latte
pair are approximately equal tov52sin(pu2N23ku/2N). It
was shown that the parametric instability that depends on
ratio of the above two frequencies,r 5v/vk , is the essential
mechanism causing the strongk/N dependence of the mod
stability in the range 0.5,k/N,0.9: the enhancement of th
mode instability neark/N50.5 is attributed to the strong
parametric instability occurring whenr .1, while the appear-
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ance of the stability band neark/N50.67 is attributed to the
suppression of the parametric instability occurring whenr
.0. The analytical result obtained by the averaging meth
shows that the frequency shift in the initially excited mo
oscillation plays an important role in thek/N dependence o
the LCE and subsequently in that of the mode stability, i
plying that one must take into account the frequency s
ys

g.
d

-
ft

when studying the mode stability.
Since the parametric instability mechanism is the co

mon origin of the instability in many models, it is expecte
that the strongk/N dependence of the mode stability w
have observed in the present study is generic and observ
in the other anharmonic lattice models although the type
k/N dependence is model dependent.
v.
@1# E. Fermi, J. Pasta, and S. Ulam,Collected Papers of E. Fermi,
edited by E. Segre´ ~University of Chicago, Chicago, 1965!.

@2# N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett.15, 240
~1965!.

@3# F. M. Izrailev and B. V. Chirikov, Dokl. Akad. Nauk SSSR
166, 57 ~1966! @ Sov. Phys. Dokl.11, 30 ~1966!#.

@4# G. P. Berman and A. R. Kolovskij, Zh. E´ ksp. Teor. Fiz.87,
1938 ~1984! @ Sov. Phys. JETP60, 1116~1984!#.

@5# N. Budinsky and T. Bountis, Physica D8, 445 ~1983!.
@6# R. L. Bivins, N. Metropolis, and J. R. Pasta, J. Comput. Ph

12, 65 ~1973!.
@7# C. F. Driscoll and T. M. O’Neil, Phys. Rev. Lett.37, 69

~1976!.
@8# N. Saito, N. Ooyama, Y. Aizawa, and H. Hirooka, Pro

Theor. Phys. Suppl.45, 209 ~1970!.
@9# N. Saito, N. Hirotomi, and A. Ichimura, J. Phys. Soc. Jpn.39,

1431 ~1975!.
.

@10# P. Bocchieri, A. Scotti, B. Bearzi, and A. Loinger, Phys. Re
A 2, 2013~1970!.

@11# M. Pettini and M. Landolfi, Phys. Rev. A41, 768 ~1990!.
@12# M. Pettini and M. Cerruti-Sola, Phys. Rev. A44, 975 ~1991!.
@13# H. Kantz, Physica D39, 322 ~1989!.
@14# H. Kantz, R. Livi, and S. Ruffo, J. Stat. Phys.76, 627 ~1994!.
@15# M. Pettini, Phys. Rev. E47, 828 ~1993!.
@16# L. Casetti and M. Pettini, Phys. Rev. E48, 4320~1993!.
@17# L. Casetti, R. Livi, and M. Pettini, Phys. Rev. Lett.74, 375

~1995!.
@18# L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. E54, 5969

~1996!.
@19# G. M. Zaslawsky,Chaos in Dynamic System~Harwood Aca-

demic, Amsterdam, 1987!.
@20# K. Yoshimura, Phys. Rev. E54, 5766~1996!.
@21# N. N. Bogoliubov and Y. A. Mitropolsky,Asymptotic Methods

in the Theory of Nonlinear Oscillations~Gordon and Breach,
New York, 1961!.


