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Mode instability in one-dimensional anharmonic lattices: Variational equation approach
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The stability of normal mode oscillations has been studied in detail under the single-mode excitation
condition for the Fermi-Pasta-Ulagattice. Numerical experiments indicate that the mode stability depends
strongly onk/N, wherek is the wave number of the initially excited mode aXds the number of degrees of
freedom in the system. It has been found that this feature does not changé\vilereases. We propose an
average variational equation — approximate version of the variational equation — as a theoretical tool to
facilitate a linear stability analysis. It is shown that this strduiy dependence of the mode stability can be
explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional
approximation of the average variational equation, which approximately describes the time evolution of varia-
tions in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation
demonstrates that the parametric instability mechanism plays a crucial role in thelgtkbdgpendence of the
mode stability[S1063-651X%99)03003-2

PACS numbeps): 45.05+x, 05.45-a, 05.20-y

I. INTRODUCTION scale or the stability of nonequilibrium motions depends on
initial conditions.

The statistical mechanics is established on the assumption The simplest situation arising in the study of the stability
that every system will settle in an equilibrium state. One-properties of nonequilibrium motions in one-dimensional an-
dimensional anharmonic lattices form one of simple dynami-harmonic lattices is that involving only a single-mode exci-
cal models to check this assumption. The study of the stabiltation or a narrow-packet excitation. In such a situation, only
ity properties of nonequilibrium motion exhibited by one- a single normal mode of some wave numbieor a wave
dimensional anharmonic lattices was initiated by Fermipacket of small sizeSk with mean wave numbek (ok/k
Pasta, and Ulanil] to numerically check whether the as- <1) is initially excited. For a system subjected to such ini-
sumption is satisfied. They chose an initial condition fartial conditions, the stability of this mode of wave numbes
from equilibrium, giving all energy to the lowest frequency characterized by a time scale over which its energy is trans-
normal mode, and then numerically integrated the equationterred to the other modes. It is important for the purpose of
of motion, expecting that chaotic energy exchange amongnderstanding the dynamics of one-dimensional anharmonic
the normal modes was occurring because of anharmonicithattices to study how mode stability depends on the wave
of the lattice and the system was quickly relaxing to an equinumberk in a system with simple initial conditions of this
librium state characterized by energy equipartition. How-form. However, even this simple stability problem is not yet
ever, it is well known that evident relaxation to the equilib- fully understood and in fact the mechanism underlying the
rium state did not occur within their observation time scalewave-number dependence of the mode stability has not yet
but quasi-periodic normal mode oscillation including only abeen described nor even identified.
few low frequency modes was observed. Their numerical There are only a few works that study the above men-
experiments suggested that nonequilibrium motions can lagtoned problems. Izrailev and Chirikov applied the resonance
for a reasonably long time in one-dimensional anharmoni®verlap criterion 3] (see also Ref[19]) and determined the
lattices. chaoticity limit, which is the energy density threshold distin-

Since the appearance of their ground-breaking workguishing weakly and strongly chaotic motions, as a function
many studies have been carried out to understand the dynamf the wave numbek for the Fermi-Pasta-UlaniFPU) B
ics of such system$2—14. It is clarified that there is a lattice. They concluded that in the regime of small.e., k
certain energy threshold for a transition from weakly to<<N, where N is the system sizenormal modes become
strongly chaotic motion and the system relaxes to the equimore unstable asincreases. Berman and Kolovskij approxi-
librium state in a small time scale when energy increasesated the FPUS lattice using a nonlinear Schdimger equa-
well above the threshold. Recently, a new interpretation ofion under the narrow packet conditiatk/k<1 and deter-
the energy threshold was propogéd,12 and detailed study mined the chaoticity limit as a function &f[4]. They found
of the chaoticity transition at the threshold was done by usthat in the regimeN—k<N, normal modes become more
ing the Riemannian geometric description of Hamiltonianstable ask increases. These two works provide qualitative
chaos[15-18. However, it is not still clear how the time results on the wave-number dependence of the mode stabil-

ity, and their theoretical analyses give an indication of the
possible underlying mechanism.
*Present address: NTT Communication Science Laboratories 2-4, In a previous paper, we obtained quite different results for
Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan. Electhe FPUS lattice using both theoretical and numerical
tronic address: kazuyuki@cslab.kecl.ntt.co.jp analysiq 20]. This study, however, was restricted to the sys-
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tem of sizeN=128. We found that mode stability intricately ANt N1 8

depends on the wave numbeof the initially excited mode, H= Ez pi2+z E(q‘_qi‘1)2+ Z(Qi_qi—1)4 .

contrary to the simplek dependence reported in the two =1 =1 1
above-mentioned works. Our results demonstrate that the in- @
stability of the normal mode is enhanced intermittently inqpis is referred to as the FPB-model. This Hamiltonian
some specific wave-number ranges. It is also demonstrateghscripes a one-dimensional anharmonic lattice with nearest
that normal modes possessing wave numbers within a Certaﬁbighbor interaction. The paramej@represents the nonlin-
range are extremely stable even at high energy density. Thear coupling strength. We will s@@=1 in later discussion.
present paper reports further study on these phenomenge employ fixed-end boundary conditions, i@y=qy=0.

which is mainly addressed to two problents: identifying  The equations of motion derived from the Hamiltonidn
the mechanism causing the strong wave-number dependengg

of the mode stability, andi) determining the effect on this
strong wave-number dependence caused by an increase it@qui
the numbem of degrees of freedom. quHl_" i-1— 20+ B[(di+1—9)°~ (g —gi-1)°].

We carried out numerical experiments within the range @
128-512 to investigate the effect caused by an increalse in
And, for the purpose of identifying the mechanism, we theo- o, ¢onyenience, we introduce normal mode coordinates.
retically studied the mode stability using a linear stability t,o transformatior—Q defined by
analysis of the orbits that start from single-mode excitation
initial conditions for various values & We approximate the N1 K
relevant orbits with a Jacobi elliptic function and propose a gi= NZ kain(wi) (i=1,2,...N=-1), (3
variational equation valid along the approximate orbits as a k=1
theoretical tool to facilitate the linear stability analysis. It is
shown that the linear stability of the approximate orbits is
closely related to the mode stability and it explains the stron
wave-number dependence of the mode stability quite well.
Moreover, we carry out a detailed study on the mechanism 7k

W= 25"'( ) .

gives the normal modes of the corresponding harmonic sys-
em. Here Q, is the amplitude of th&th normal mode. The
haracteristic frequency of tHeh normal mode is given as

responsible for the strong wave-number dependence. We re-
write the variational equation valid along the approximate
orbits in the normal mode coordinates and introduce a four- . . .
mode approximation of it obtained by retaining only four In terms of the normal m(_)de _coord|_nat@sa_nd their conju-
mode components that are dominant in determining the lindate moment#, the Hamiltonian(l) is rewritten as

ear stability. We show that a parametric instability mecha- N—1

nism of the four-mode variational equations is essentially
responsible for the enhancement of instability and the exis-
tence of the highly stable modes.

The present paper is organized as follows. In Sec. Il, we
describe the FPB model and define the stability of the
normal mode. The numerical method we employ to investi-
gate the stability is also described. In Sec. Ill we report the )
results of numerical experiments showing the effects caused ) o
by increasingN on the mode stability. In Sec. IV we under- WhereD(ky,k; k3, ks) represents the selection rule defining
take a theoretical investigation of the mechanism responsibl€ interaction among the normal modes. It is explicitly writ-
for the strong wave-number dependence of the mode stabilen as
ity through a linear stability analysis. Conclusions are of-
fered in Sec. V. D(ky,kz,k3,k4)

= 8(Ky+ Ky, kg+Kg) + (kg + K, Ko+ Ky)

5N 4

H=2 (3P@+302Qd)+ s
k=1 8N

N—-1

o, - - 0, Qi+ - - Qi DKy, Kz K3, Ky),
ky ko kg k=1

1. DYNAMICAL MODEL AND STABILITY OF NORMAL + 6(Ky+Ka, Ko+ Kg) + 8(ky+ Ko+ Kg,Ky)

MODE + 8(Ky+ Ko+ Ky kg) + 8(Ky + Ka+ Ky ko)

In this section, we describe the FR&model, the normal
modes, and we define the stability of normal mode oscilla- +0(Kp+katka ky) = 3Ky +ko ks +ke,2N)
tion. We also explain the manner in which this stability is — 8(Ky + Ko+ Kg, 2N+ Ky) — 8(Kq + Ko+ kg, 2N+ k3)
numerically examined.
- 5(kl+ k3+ k4,2N+ k2) - 5(k2+ k3+ k4,2N + kl)’
A. FPU-B model and normal mode ©)

Our investigation is of the dynamical model described bywhere 6 is the Kronecker delta function. The equation of
the Hamiltonian motion for thekth normal mode is
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2

B
2
EQk"' 0 Q+ >N

N—-1

X 2 ooy, oy, o Qr Qr Qi D(K,K;,ky,k3)=0.
Ky Ky ka=1 1 K TKg Ky XKy K3
(7)

As the stability of the normal mode is the main subject of
the present study, we must be clear about how we define the
term “stability.” The initial conditions considered in the
present study consist of a single-mog@e an almost single-
mode excitation: at the initial time, a single normal mode of
wave numbelk is excited, and the amplitudes of the other

modes are set to zero. Thus Py
: . FIG. 1. Schematic illustration of a pseudoperiodic orbit. The
Qi(0)=Qi(0)=0 (i#k). (8) . . pseucopernodic
actual orbitl’(t) remains close to the pseudoperiodic oibt) for
The nature of these initial conditions implies th@(t) a certain period &t< 7. After this time it diffuses in phase space.
=0(i #Kk) holds for a short period of time< r;, wherer, is
a time scale within which the single-mode oscillation of thehis sense, we call’(t) a pseudoperiodic orbitAn orbit

kth mode lasts without significant energy being lost to thestarting from a single-mode excitation condition may stay
other modes. The time scatg depends on the wave number ¢jose to such a pseudoperiodic orbit during a certain short
kand the energy densit, wheree is related to total energy period, after which it will begin to diffuse in phase space. A
Ease=E/N. We define the stability of the mode in terms of schematic illustration of a pseudoperiodic orbit is shown in
7s: an increase irrs corresponds to an increase in the nor-Fig, 1. The length of the period is characterized4y that
mal mode stability. A method of estimating by numerical s 7 is the time scale of the stability in phase space, over
experiments will be described. which the true orbits remain “close” to the pseudoperiodic
If the approximatiorQ;(t)=0 (i #k) is made in Eq(7), orbit.
the equation of motion for thkth normal mode(the mode
excited initially) is approximated as

B. Relaxation time

d? s 3B 4. 3 The time scalerg is estimated by the numerical integra-
@Qﬁ 0l Qt 55 @kQ™=0. (9 tion of the equations of motiof®) to examine the stability of
the normal mode. In this subsection, we describe how we
It is well-known that the solution of Eq9) may be written, ~ estimaters.
with the Jacobi elliptic function, in the form We define the harmonic enerdy of each normal mode
as
Qut)=aVNcn(at ky), (10 VR
where Ei()=2[Q7 (1) +w{Qf ()], (14

and the weightsv; , which give the fraction of the total har-

2 2
a2= 4Ky 2= “k (11) monic energy in each normal mode by
3BwA(1-2K2)’ 1-2k3’ £
i
and k., is the modulus of the Jacobi elliptic function. The wi(t) = §=1 ' (19
modulusk,, is related to the energy densigyas 2 En(t)
m=1
2KZ(1-K?)
e=— . (120  Let us define the spectral entrof(t) as[11]
3B(1-2k%)
N—1
In phase space, the motion associated \KDIJQt) defines S(t)= E —w;(t)Inw;(t). (16
the periodic orbitl'(t)=[q(t),p(t)], where the components =1
of g=(0y, . .. Gu-1) are the positions obtained through the s(t) can be normalized as
transformation(3) as
Smax_s(t)
~ 2. k )=, 1
qi= \[Nkain(Wi) (i=1,2,...N—-1), (13 7t Siax— S(0) a7

~ o~ ~ ) whereS,,.,=In(N—1). The function(t) is used to measure
and the components @=(py, . .. ,Py-1) are the conjugate e extent of the energy exchange among the normal modes.
momenta. Sinc@,(t) is an approximate rather than an exact|f there is no energy exchange among the normal modes,
solution, the periodic orbif'(t) is also only approximate. In then S(t)=S(0), and 5(t) remains unity. If energy ex-
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change occursy(t) decreasesy(t)=0 corresponds to the was performed by the leap-frog algorithm because of its
state in which energy is equally shared among all the normaymplectic nature and simplicity. Allow us to briefly com-
modes. We define the relaxation timg as the time at which ment on the reliability of the numerical integration. To ex-
n(t) reaches a reference value of 0.6; ig(7g) =0.6. The amine this reliability, we have used the fact that only normal
time scaler can be estimated by calculating the relaxationmodes of odd wave number are allowed to be excited when
time 7 defined above. We will use the inverse of the relax-the initially excited mode has an odd wave number. The
ation time, 1#, as an instability indicator. The choice of the spectra of the harmonic ener§y were examined at the ends
reference value ofp(7g) is somewhat arbitrary. We note, of some runs. We confirmed that only the odd modes were
however, that the results a; are not significantly affected excited, while the energy of the even modes was negligibly
by the choice of the reference value. small. This fact supports the reliability of the numerical in-
tegration.

Figures 2—4 display the inverse of the relaxation time
1/7g plotted againsk/N and e. Figures 2—4 represent the

We reported a strong wave-number dependence of theesults forN=128, 256, and 512, respectively. The value
mode stability in our previous pap€g20]. This finding was 1/7y is presented in Figs.(8), 3(a), and 4a), and the contour
made only with respect to an FP8/attice withN=128. As  plots are given in Figs.(®), 3(b), and 4b). For a set ok/N
mentioned in the Introduction, there is an open question conand e, we carried out the numerical integration for two sets
cerning how the strong wave-number dependence of thef initial conditions with different phases of the single-mode
mode stability is affected by an increase in the number ofxcitation, one in which all the energy is contained in kinetic
degrees of freedom. form, i.e.,Q(0)=0, 1QZ(0)=E, and one in which all the

We performed numerical experiments with different sys-energ is contained in potential form, i.eO.(0)
tem sizesN in order to study théd dependence of the stabil- ly o p 4 FL vk
ity properties. The relaxation tima, has been calculated for =0. 2z @iQi(0)+(3B/8N) 0, Q(0)=E [cf. Eq. (5)]. We
various sets ok/N and e. The calculation ofrg was re- found no significant difference between the relaxation times
stricted to initial excitations of modes possessing odd waver for these two sets of initial conditions. We defined the

numbersk, because ik is even the number of modes partici- relaxation timerg for a given set ofk/N and € to be the
pating in the energy exchange with the |n|t|a||y excited average of the values found for these two sets of initial con-

mode, as determined by the selection @l depends ork, ditions. As noted above, the choice of the reference value of
while if k is odd, all the modes with odd wave number al- 7(7gr) is somewhat arbitrary. We changed the reference
ways participate. value in the range 0.4-0.7 and confirmed that the depen-
Numerical integration of the equations of motid@) dence of 145 on bothk/N ande is not significantly affected
by the choice of this reference value.
In the cases oN=128, 256, and 512, it is clearly seen
that the stability of the normal mode is intricately dependent

IIl. NUMERICAL EXPERIMENTS

1/7g 0.
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FIG. 2. (a) Inverse of the relaxation time, 4{, plotted as a 0;1 » , o

function of e andk/N. (b) Contour plot of the same quantity. The /N
number of degrees of freedom hereNis- 128. Arrows indicate the
peaks of 1fg. FIG. 3. Same as Fig. 2 for the caseM¥f 256.
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graphical presentation, averages ofgltaken over two neighboring

odd modes are plotted. FIG. 5. Same as Fig. 2 for the case that a small amount of

energy is initially placed on the two even modes next to the prin-

) . ) cipally excited odd mode. A system sizeNs=128.
on the wave number. There is a particular interval of wave

number values in which 1% does not become large but ) i . .
remains remarkably small even at high energy density,ment of orbits on the submanifold. In the additional numeri-

i.e., the modes in this interval are not destabilized by arfal experiment, a small amount of energy is initially placed
increase in the energy densifjVe note that in low energy ©n the two even modes that are next to the principally ex-
density regime, the values af; for these modes are not cited odd mode: the energy of the principally excited odd
relatively long compared with those of the other moftess ~mode and the neighboring even mode are set to 9.8
is consistent with Fig. @)].} This interval of particular sta- x10 'E and 10°2E at the initial, respectively. Normal
bility is located neak/N=0.67. We refer to this as stabil- modes of even wave number are also excited under this ini-
ity band Some peaks of % appear in ranges of wave num- tial condition and therefore the orbit is not confined on the
bers situated below the stability band. That is, the instabilitysubmanifold.
of the normal mode is enhanced intermittently in specific Figure 5a) shows 1y plotted againsk/N and e and
ranges of values ok/N corresponding to these peaks. We the contour plot is shown in Fig.(B). The results are
refer to the lines corresponding to these peaks a®ige  averaged over two sets of initial conditions with different
structure The peaks of Iz appear ak/N=0.50, 0.34, and phases of the principally excited odd mode as in the pre-
0.24. In the figures these peaks are indicated by the arrowsjous numerical experiments, one in which all the energy
which are positioned at the same valueki. It should be  of the principally excited odd mode is contained in kinetic
noted that the values &N at which the stability band and form, and one in which it is contained in potential form.
the peaks ofrg are located are identical fad=128, 256, For both of the sets of initial conditions, small amounts of
and 512, showing no apparent dependencll.orhese simu- energy of the neighboring even modes are contained in ki-
lation results indicate that the stability of the normal modenetic form.
depends ork/N, but not onk, and that the intricate depen-  The strong wave-number dependence of mode stability is
dence onk/N is relevant even in the thermodynamic limit clearly observed in the figure. Sineedecreases faster under
N—oo. these sets of initial conditions than under the rigorous single-
The above numerical experiments dealt with the initialmode excitation, the values of 7 are larger than those in
conditions for rigorous single-mode excitation. Normal Figs. 2—4. However, the wave-number dependence of mode
modes of even wave number are never excited under thostability coincides with those shown in Figs. 2—4 completely:
initial conditions. Therefore, the orbits are confined onpeaks of 1#gz, which are indicated by arrows, and stability
the submanifold spanned by the odd modes’ coordinates fdsand appear at the same valueskdfl. This result shows
all time. We carried out an additional numerical experimentthat the strong wave-number dependence of mode stability is
in order to confirm that the observed strong wave-numbenot an artificial effect caused by the confinement of orbits on
dependence of mode stability is not caused by the confinghe submanifold.
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IV. THEORETICAL ANALYSIS Linear stability can be quantified by the exponential growth
rates of the solutiong(t) of Eq. (18).

Since we are interested in the stability time scale ex-

In this subsection, we introduce a@verage variational ponential growth rates in the short period of time 7
equation(AVE), which we propose as a theoretical tool for (rather than through infinite timeare useful. This fact en-
the stability analysis. ables us to simplify the variational equatittB). Any orbits

We defined the stability of the normal mode in termsof  starting with single-mode excitation initial conditions remain
in the previous section. The stability time scailg(or 7g) is  close to the pseudoperiodic orbit fox 7. In other words,
expected to be closely related to linear stability of an orbitthe pseudoperiodic orbit approximates, in an average sense,
with the relevant initial condition: exponential divergence of the true orbit generated by the equations of mot®rfor the
nearby orbits may be regarded as evidence for chaotic strughort period of timet< . Therefore we replace the refer-

ture of the neighborhood of the orbit in phase space. In gens .o orbitg(t) in Eq. (18) by the pseudoperiodic orbd(t)

eral, the presence of chaotic region in phase space IS €finaq by Eq.(13). That is, the variational equation em-
pected to yield faster diffusion of the orbit, implying faster ployed for the theoretical analysis is

energy exchange among the normal modes.

The close relation between the linear stability and the sta-
bility time scale may be justified by the following consider- d?& N —0 20
ation(see Fig. 1 Let P, be an initial phase point of an orbit ﬁ+—(q(t))§_ ' (20
I’(t) with single-mode excitation initial conditior{er almost
single-mode excitation initial conditions including small per- . . . -
turbations, as in the case of Fig. &ndP,,(n=1,2,...) be We call this the average variational equat|on.~ All the el-
the phase points df(t) at timet=nT, whereT is the period ~e€ments of the matriy/(q(t)) are periodic sinceg(t) is a
of the pseudoperiodic orbit. Consider the orlbit;P;)  Periodic function. _
which has the initial pointP; at t=0, i.e., [(t;P;)=T(t According to Fquu.et thgory, Eaj?O) can.have asol_utlon
+T). Since P, is close to the initial pointP,, the time thzit grows exponentially in time if the time evolution of
evolution of the difference betwedi(t) andI'(t;P,) is ap-  V(q(t)) is of a suitable nature. The largest exponential
proximately described by the variational equation. Thereforegrowth rateh ; of the solution is useful to quantify the linear
the ratiod, /d, of distances, where; represents distance stability and estimated by
betweenP; andP;, ;, is approximately given by the growth
rate of a corresponding solution to the variational equation 1 &
for the time intervalT. Similarly, within the stability time Ni= ”mfln||§(0)||’
scale 0<t<rg, whered; is not so large, the other ratios toee
di/dy,(i=2,3,...) arealso approximately given by the
growth rates for the time interval3. The distance between where||&| is the Euclidean norm of. The quantity\, is
P, and P, measuring separation df(t) from P, for time  called thelargest characteristic exponerft CE). We mea-
interval nT is roughly estimated asly+d;+---+d,_;.  sure the linear stability by, for the purpose of understand-
Therefore, larger growth rate of the solution to the varia-ing the intricate stability properties of the normal mode ob-
tional equation implies faster separation of the orbit from itsserved in the numerical experiments.
initial phase point. This consideration may support the close In principle, the original variational equatidi8) should
relation between the linear stability and the stability timebe used for linear stability analysis. However, it is not par-
scale. ticularly useful to obtain a theoretical understanding of the

As mentioned above, it is natural to consider the linearessential mechanism which determines the stability proper-
stability. Linear stability is examined by means of the varia-ties of the normal mode, because detailed behavior of the
tional equations which are obtained by linearizing the equatrue orbit q(t) generated by the equation of moti¢®) is
tions of motion(2). The variational equations are given in complicated and depends on each sampled reference orbit. It
the vector form is necessary to make some approximation and simplification
of the time dependence of the evolution matkiXq(t)).
Therefore, from a theoretical point of view, it is important to

replace the true orbif(t) by the pseudoperiodic orbi(t).

The AVE is more useful than the original variational equa-

tion for the purpose of obtaining a theoretical understanding
because of the simplification resulting from this replacement;
as will be shown, this replacement, accompanied by further
approximation, makes it possible to show that the parametric

A. Average variational equation

21

d2¢
e +V(q(t))é=0, (18

where £ represents variations in positiog(t) is the refer-
ence orbit generated by the equations of mot{@h and
V(q(t)) is the N—1)X(N—1) Hessian matrix for the po-

tential function the elements of which are given by instability mechanism plays a crucial role in determining the
stability properties of the normal mode.
2+3B[(0i— i+ )%+ (q—ai-?%], i=], The AVE is, of course, not a vz_iriational equation_ in_ the
2 . usual sense. Thus one might claim that the AVE is inad-
[V@t)];=9 —1-38(@i—ag)* i=j=1, equate and that the original variational equation must be used
0 otherwise. for linear stability analysis. However, we will show that the

(19 AVE is adequate to approximately describe linear stability
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and additional peaks, which are very weak, may be perceiv-
able in smaller wave-number ranges. These three peaks ap-
pear at values of th&/N identical to those at which the
peaks of 1fgz are indicated in Figs. 2-5. The agreement
between the AVE analysis and the numerical experiments
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o5l . “‘:%3§§?¢§¢§§§\‘§\§§§\§\\\\§\§\\§§\\\§§\ establishes the close relation between the stability time scale
e R s and the linear stability along the pseudoperiodic orbit, and

S
“““:‘\\\x \\\\\ N

indicates that the features observed in the numerical experi-

\ D .. .
S \§:§§§\\§\}Q\\§§§\\§\ : ments, namely the stability band and the ridge structure, can
100 Rt s ;
ﬁwg% o be well understood in terms of the LCE.

Eeeaaae,, We now compare the LCE; with the largest exponential
6“%“‘%““‘“\\ growth rate\; of the solution of the original variational
equation in order to confirm that the AVE is adequate for
approximately describing the linear stability of the true or-
0.01 0.01 k/vN bits.

We first describe the method that numerically computes

N1. The original variational equation used for the compari-
b son also corresponds to a lattice with=128. The original
(b) variational equation has R(—1) independent solutions
since it is a N\—1)-dimensional second-order differential
. equation. We can construct theNe{ 1) independent solu-
tions &V(t)[n=1,2,...,2N—1)] if we assume their initial
conditions as
(n) L ()]
L L 0.01 §| (O): 0 |7&n §| (O):O (n=1,...,N—1),
0.01 Q.1 1 ! !
(22
and
FIG. 6. (a) LCE A, of AVE plotted as a function o&¢ andk/N. _
(b) Contour plot of the same quantity. £M0)=0, £&"(0)
. . 1, i=n—(N-1)
along the true orbits through a comparison between the re- — [n=N,...,2N—-1)]
sults of the AVE and those of the original variational equa- 0, i#n—(N-1) o '

tion. 23
where&M(i=1,... N—1) is theith element of the vector
&M, For a given reference orhif(t) calculated from Eq(2),

We have numerically calculated the LOE of the AVE  the time evolution of these M(— 1) solutions was numeri-
[Eq. (20)] for various sets ok/N ande. The AVE used for  cally calculated according to E@18), and the calculation
the calculation corresponds to a lattice with=128. The  was continued until the spectral entropyt) reached 0.8.
results are shown in Fig. 6, where the LCE is plotted as ave denote the time at which the calculation was ended by
function of k/N and e, i.e., we considen;(k/N,e). The 7, i.e., 5(7,)=0.8. It is reasonable to compakg with the
function X, (k/N,e) is represented in Fig.(8), and the con-  value \; calculated for the period in which large-scale en-
tour plot is given in Fig. €). We also calculated the LCE ergy exchange between the initially excited mode and the
for a few values ofe, with larger system sizeN=256 and  other modes does not take place, because the pseudoperiodic
512 in order to examine th¢ dependence of the LCE. There orbit is considered to approximate the true orbit only for the
was no apparenil dependence in the results: the LCE de-short period of time 6:t< 7. Therefore the reference value
pends ork/N, but not onk. Thek/N dependence of the LCE (.8 of n(7o) was chosen to be close to 1. We define the
for N=256 and 512 was identical to that fof=128. This  matrix
observation is consistent with the results fotglshown in
the previous section. EV(rg)  E2(r0) ... 2Nz

The plot of A, shown in Fig. 6a) is quite similar to the . .
plots of 1/ shown in Figs. 2a), 3(a), 4(a), and Ja). In the ' '
interval of the wave number corresponding to the stability &la(to) &4(m0) ... &N V(10

B. Results of AVE analysis

band, located nedt/N=0.67, A\, does not increase as the R= -5(1)(7_ ) -§<2>(T ) o '§(2(N—1))(T E

energy density increases, but rather remains remarkably 1 Aro 117 ! 0

small even in the high energy density regime. Some peaks of H : ' i

A\, are also found in wave-number ranges below the stability (1) “(2) “(2(N—1))
EnZa(To)  ENZa(T0) - N—1 (70)

band. (This is the ridge structure mentioned abgvEhree
peaks of\; are clearly seen ne&dtfN=0.50, 0.34, and 0.24, (24)
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0.2 y ; - — y " solid circles with error bars, and the LCE is also repre-
sented by the thin solid lines, where the error bars represent
(a) standard deviations.
015 | Y The results show good agreement betwiegmand the\ ;.
; A small amount of discrepancy may be attributed to small-

_} amplitude oscillations of modes other than the initially ex-
X odo | . cited one. Even in the early stage of time evolution of the

1 system, there occurs small-scale energy exchange between
s the initially excited mode and the other modes. The existence
of the small-amplitude oscillations of the other modes, which
[ is neglected in the pseudoperiodic orbit approximation, may

A . be the reason for the difference in the value\gfand\; . In
e * R fact, the result fore=0.1 shows very good agreement be-
%0 61 oz 03 04 05 06 07 08 085 10 tween\; and\;. This is, no doubt, due to the fact that the
kN energy exchange in this case of early time is smaller than in

— . : : " , v the other two cases.
06 1 The plots of\ ; clearly exhibit the stability band structure:

{ for values ofk/N corresponding to the stability band, both
o5 :HH' A; and); remains small when the energy density increases.
{ The ridge structure can also be found in the plotshéf
] Figure {a) clearly shows the peaks af; atk/N=0.50 and,
though it is quite weak, also &fN=0.34. In Fig. 1b), these
two peaks appear more clearly, while the peakk&u

005 | !l

04 F

03 ¢ I fii

{ ] H =0.24, as expected from the AVE analysis and the numeri-

o2r { } ;‘f ] cal experiments, cannot be clearly discerfieédnay be very

AL 4 weak. The peak ak/N=0.24 can be seen in Fig(d. We
o leghatt }.} ! | have also computed; with the different reference value
o ; ) L e 7n(79)=0.6, since the choice of(7,)=0.8 is somewhat ar-
708 01 02 03 04 05 06 07 08 09 10 bitrary. Both the stability band and the ridge structure are
clearly seen in the results fay(7)=0.6 also, though the
agreement between, and\, as expected, becomes worse.
1or The above comparison demonstrates that the AVE is ad-
(c) { HH# equate to approximately describe linear stability along the

true orbits: i.e, the tangent properties of the pseudoperiodic

orbits are similar to those of the true orbits. It must be em-
phasized that the contribution of the pseudoperiodic orbit to

H }ﬂ{ ] the time dependence of the evolution mawiis dominant in

_;i P determining the linear stability of the true orbits with single-

li ‘ 1 mode excitation initial conditions.

0.8

06

04}
i Based on the AVE analysis, it can be concluded that the
oz b F i i ] strong k/N dependence of the mode stability found in nu-
il I; i merical experiments, namely the stability band and the ridge
L structure, is explained by the nature of the linear stability
9% od oz 03 04 o5 06 07 08 o5 1o along thepseudoperiodicorbit. In particular, the stability
E/N band is characterized by a small exponential growth rate
along this orbit.

FIG. 7. The largest exponential growth rat¢ of the original
\):fzrllaz';)orelil g_qll_J?tt)l)ozzvi/_g,'((I;_)CEE:)\51,(§_SO“d line) is compared with C. Four-mode approximation of AVE
The validity of our use of the AVE was confirmed in the
from the solutionse™ (7o) at time 7. The value of\] was above. We'now proceed Fo carry out further theoretical study

. ) o on the basis of the AVE in order to understand a part of the
Qeterr,nmed from the’ largest §|genvalp|@ of the matan, mechanism causing the strokgN dependence of the mode
e, Nj=In|pgl/r. N determined by such a procedure de- stability. In particular, we clarify the essential mechanism
pends on the reference orlgjt) considered. We calculated causing the instability enhancement kiN=0.5 and high
A according to the above procedure for ten different feferstability in the stability band.
ence orbits which were obtained by enforcing single-mode In the previous subsections, we used the AVE and the
excitation initial conditions with different phases. We then origina| variational equation which are expressed in the or-
averaged over the set of reference orbits. dinary coordinates because of convenience for numerical cal-

Figures Ta)-7(c) display \; plotted againsk/N for €  culation: a large number of interaction terms appear in the
=0.1, 1.0, and 5.0, respectively; is represented by the original variational equation if it is written in the normal
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(@) £=0.1 | | (a) £=0.1 |
| - ui
| | |
é |‘6 2.4 3'2 40 48 56 6‘4 7‘2 5‘0 8‘8 9'6 164 m2 120 8 |‘6 2'4 32 40 48 56 64 72 B‘O 8‘8 96 104 112 120
i i
(b) e=1.0 (b) £=1.0
| - ui
e o1 s 40 a5 85 o1 72 80 5 6 107 12 20 5 96 i s 40 a5 e o4 72 80 85 86 104 Tz 120
i i
FIG. 8. Maximal values of mode componentsplotted against FIG. 9. Same as Fig. 8 for the caselot 75. (a) e=0.1.(b) €

i for the case ok=65. The number of degrees of freedom here is =1.0.
N=128(a) e=0.1.(b) e=1.0. o

=¢&| 4|, as a function ofi for k=65, 75, and 85, respec-
mode coordinates and it is cumbersome to calculate the trdé/ely. It is found in the figures that most qf; are almost
orbit in the normal mode coordinates by integrating E¢.  equal to zero and only a small number of components take
However, it is convenient to rewrite the AVE in the normal honnegligible values. This fact makes it possible to approxi-
mode coordinates for understanding the mechanism respofate the AVE by low-dimensional equations consisting of a
sible for the strong/N dependence of the LCE. In this sub- few important mode components.
section, we rewrite the AVE and make a further simplifica- Figure 8 refers to the case &=65 (k/N=0.51). The
tion on it. We introduce the equations which are obtained byrormal mode ok=65 exhibits strong instability: a peak of
retaining only four important components in the AVE andthe LCE appears ne&/N=0.5 in Figs. Ta) and qb), there-

truncating the others. fore the LCE for this mode is relatively large for both of the
The AVE [Eq. (20)] is rewritten in the normal mode co- casese=0.1 and 1.0. In Figs. (@) and 8b), it is found that
ordinates as the mode components having nonnegligible values possess

their indicesi close to the initially excited mode’s wave
d? . s 3B =, . numberk=65 for bothe=0.1 and 1.0. It should be noted
Efi"“wi &t 5 @kQk ;1 wiw;§D(i,],k,k)=0, that four mode components witk- 60, 62, 64, and 66 take
(25) large values in this case of large LCE. These four mode
components are coupled in E@5) as follows: two compo-

herek is th ber of the initiall ited mod q nents ofi =64 and 66, whose indices are next to the initially
whereks the wave humber ol In€ Initially exclted mode and o, siteq mode’s wave number, are directly coupled to each

& represents a variation in théh normal mode amplitude other with nonzero coupling coefficieBt=1 and the other
Qi The functionD(i,j,k,k) gives a coupling coefficient two components of =62 and 60 are directly coupled fo
between mode componengsand; . =64 and 66 withD=—1, respectively
We numerically integrate Eq25) and calculate the varia- Figure 10 refers to the case k=85 (k/N=0.66). The

tional vectorg which gives the LCE, in order to find out a set hormal mode ofk=85 is a highly stable one: the LCE for
of a small number of mode Componer&tswhich are impor- this mode remains small even for the larger energy density
tant for describing th&/N dependence of the LCE, espe- €=1.0 as seen in Fig.(#). In contrast to the case df
cially in the k/N range near the stability band (68/N =65, Spectra ofu presented in Figs. 18 and 1ab) are
<0.9). We started the numerical integration with initial con- duité different. The mode components with indices close to

. N k=85 are almost equal to zero for both of the case®.1
ditions £(0)=0 and £(0)=1/yN—1, and converged the and 1.0. Two mode components with indices that are sym-
vector &(t) to that gives the LCE by iteratively normalizing metrically far fromk= 85 take large values: the components
its norm. In the numerical calculation, we 9¢t=128. Fig- of i =69 and 101 are large far=0.1 and those af=67 and
ures 8, 9, and 10 show the maximal values that are taken b303 for e=1.0.
mode components of the vectgr, which is defined byu The normal mode ok=75 (k/N=0.59) is of intermedi-

N—-1
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T T 0.14
€=0.1
(a)
0.1
I 0.08
Lt A
- 0.08 4
0.04 b
0.02 |
° | | 1Ll 1
8 1.6 2‘4 3.2 4.0 48 56 6‘4 7‘2 8‘0 BIB 9‘8 104 112 120 0(71.5 0.55 0.6 0.65 017 0.‘75 o?a 0,'85 0.9 0.95
t k/N
i i j ) " " ) " 0.56
(b) €=1.0
L
. ‘| 1L |} |
é 16 24 32 4‘0 4‘3 5‘6 6‘4 7‘2 80 88 96 1LI)4 1;2 1;0 0 1 n L n n 1
i 05 0.55 06 0.65 0.7 0.75 0.8 0.85 0.9 0.95
k/N
FIG. 10. Same as Fig. 8 for the casekof 85. () €=0.1. (b)

FIG. 11. The maximal exponential growth rateof Eq. (26)
plotted againsk/N. The number of degrees of freedom used in
numerical calculation ifN=128 (a) e=0.1.(b) e=1.0.

e=1.0.

ate stability. This mode is not involved in the peak of LCE
appearing arounk/N=0.5 in Fig. 7a) and thus the LCE for
this mode is not relatively large wher=0.1. However, this
mode comes to be involved in the peak in Figh)7and the
LCE becomes relatively large whea=1.0. Correspond-
ingly, the spectrum ofu changes between the case ©f
=0.1 and 1.0, in Figs.(®) and 9b). Spectrum fore=0.1 is
similar to those observed in Figs. (@ and 1Qb). The mode
components of =54 and 96, which are symmetrically far
from the initially excited mode’s wave numbé&r=75, are
large. In contrast to this, spectrum fer=1.0 is similar to
those observed in Figs.(@& and 8b). It is seen that four 5
mode components af=30, 32, 74, and 76 take large val- d_A c Wl + 3_/3’ 2=
ues fore=1.0. These four mode components are coupled in dt2§‘1 w‘lgil 2N Qi
the same manner as in the cas&ef65: two mode compo-
nents ofi =74 and 76, which are next to=75, are directly X (20} & + o, 0,&,~ 0,0 §)=0,
coupled to each other with the coupling coefficiBnt 1 and
the other two mode componentsicf 32 and 30 are directly
coupled to =74 and 76 withD = — 1, respectively. It should
be noted that these four mode components take large values
when the LCE is relatively large. R R R
Several peaks of LCE seen in Figgapand §b) may be x(wilwi2§i1+ wazgiz—wizwugu):O,
caused by some parametric instability mechanism because
the AVE is a set of coupled Hill equations. The above ob-
servation shows that the LCE becomes large when the four — +wlE + 3_sz(~gz(_w_ w & +202% )=0
mode components are dominant, while it cannot achieve a gt2°'s ~ '3°'s 2N K~k 17185 1313 '
large value when the two mode components symmetrically (26)
far from k are dominant. Therefore, it is conceivable that a

LCE, i.e., the reasons why the LCE is maximized nie/ay
=0.5 and why the LCE is small ne&afN=0.67.

The indices of the four dominant mode components are
given byi=k—1k+1,|2N—-3k+1|, and|]2N—-3k—1| as a
function of the initially excited mode’s wave numblerThe
mode components df=|2N—3k+ 1| and|2N—3k—1| are
directly coupled to the components ofk—1 and k+1,
respectively. If we retain only these four mode components
in Eq. (25 then we have equations of the form

2
) . 38 .
@éﬁ wi22§i2+ mwﬁQﬁ

parametric instability due to interaction among those four 2 38
mode components yle_lds a large value of LCE, pla_1y|ng an  —g + wi24§i4+ ﬁwﬁQi(_“’iz“’ufiﬁ zwi24§i4):0,
important role in causing the peak of LCE appearing near dt

k/N=0.5. We show that an analysis on the basis of equations
consisting of the four dominant mode components can reveathereiq,i,,iz, andi, stand fork—1k+1,2N—3k+1],
the mechanism underlying the strokgN dependence of and|2N—3k—1|, respectively.
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We denote the maximal exponential growth rate of the oo — — —
solution to Eq.(26) by \. Figures 11a) and 11b) display\ el (a) /
plotted againsk/N for e=0.1 and 1.0, wherg is calculated /
for N=128. The results are in good agreement with those of
the LCE shown in Figs. (8 and db) although there is a
difference in a range ne&/N=0.67, where the two mode
components with indices symmetrically far frdtrare more
important than the four mode components included in Eq.
(26). In Figs. 11a) and 11b), A decreases a€¢/N increases
up tok/N=0.67, above which it increases again. This agree-
ment demonstrates the validity of EQ6) in describing the
main feature ofk/N dependence of the LCE in the range
0.5<k/N<0.9, apart from the difference observed in the
range where the two mode components are dominant. Here, ozsh
we note that another type of parametric instability among the
mode components may have to be considered in the other
range ofk/N.

We also calculated the spectrum gfand \ for larger
system sizedl=256 and 512. It was observed that the same
four mode components,k—1k+1,|2N—3k+1|, and
|2N—3k—1], have large values when the LCE is large. The oos |
k/N dependence ok is also in agreement with that of the
LCE obtained from the full-dimensional AVE in the range o o1 ez s o4 05 es 07 o5 a8
0.5<k/N<0.9. This fact indicates that the four-mode ap- r
proximation, Eq.(26), is valid for anyN.

We now proceed to clarify the essential parametric
instability mechanism in Eq(26) that causes the strong
k/N dependence of\ observed in Figs. X&) and
11(b). The frequenciesw; ,w;, w;,, and w;, are given
by w; =2si{m(k—1)/N], w;,=2sifm(k+1)/2N], w;,

X 0.5 |

01 F

FIG. 12. The maximal exponential growth rateof Eq. (27) [or
Eq. (31)] plotted as a function of the frequency ratiby solid line.

(@) €=0.1.(b) €=1.0. In(a), an analytical estimation for X and
a leading term in the expansion ®f are also plotted by the dashed
line and dash-dotted line, respectively.

= 2sin(@2N—3k+1|/2N), and  w;,=2sin@2N-3k e k

—1J/2N). It should be noted thaty =w;,=w, and w;, S'”(EZ_?’N’)

~w;,~o for large N, where vy and v are defined byw e Ak (28)
=2sin(@k/2N) and w=2sin(@2N—3k|/2N). Therefore, we S'H(E)

can approximate am; = w;,= w and Wi = 0, = o. This
approximation can be validated by a numerical calculation ofind the functiong(r) is defined as
Eq. (26) with the approximationw; =w;,=wy and w;,

=0, =o. If we make the above approximation, introduce a _ Ok o) = A (1+ 686  4r K 29
new time variabler=w,t, and rewrite the dependent vari- #(7) \/NQk(T ) M(1+68e) rknl. (29
ables by&y, &, &, and& in Eq. (26), then we obtain
the equéfit)nsgz £ £ 9129 wherek,, is the modulus defined by E¢l2) and the ampli-
tude A is given by
dz T x 3 200k | T* T* 2
Efl"’fl‘*‘iﬁﬁb (287 +& —1é3)=0, AZZ@(—l—F\/l—FGBE). (30

P 3 The function¢ does not depend on bothandN.
_233 + 8+ Eﬁﬁbz(gf +28 —r&)=0, Alf we irltrodyce new vaAriabezsgf -8, (=8
dr ~&, L=E+¥, and,=F+F, then Egs.(27) are
27 divided into two decoupled pairs of equations of the form
2

d—§*+r2$*+§ﬁ¢2(—rg*+2r2$*)=o d? 3
d-2 3 372 1 8 ' _2§1+€1+ —,8¢2(§1—r§2)=0,
dr 2
d? 3 (31
— B r2E 4+ S BPA(—rE +2r2E)=0 d? 2, O o0 2
dr2™? 42 2 4 ’ @52‘“ Lot 5B (—riitar {7)=0,

wherer is the ratio betweemw and wy defined by and
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d2 3 For small energy density, we can solve Eq(31) ana-

— {3t {3t §,8¢2(3§3—r§4)20, lytically by means of the averaging meth¢@l]. The ana-

dr lytical results provide more information. From EQ9), the
(32)  period of the functionyp is given by

dz 2 3 2 2
ﬁ(ﬁf Cat 5B (—r{3+2r°¢y)=0. O AK(Kn) 4 2 de
?(1+68Y (1+6B8e)Y4o J1—KZsirPe’
We denote the maximal exponential growth rate of the solu- (37

tion to Eq.(27) by X, which is related toA as A= w\.

Equations(31) give the maximal exponential growth rate

We calculatec\ for various values of by numerically inte-
grating Eqgs.(31). Figures 12a) and 12b) show A plotted 27 w(1+6Be)Y*
againstr for e=0.1 and 1.0, respectively. shows a maxi- - T_¢= C2K(ky)
mum atr=1 and decreases asdecreasesn has a very

small value near =0. A strong parametric instability occurs Using the approximationg(7)=Acos(17), we bring Eq.
nearr =1 while the parametric instability is suppressed near31) to the form

r=0.

whereK(k,,) represents the elliptic integral with modulkg
defined by Eq(12). The corresponding angular frequency is

(39

If r=0, k/N satisfies the relation d?
ﬁ§1+gl +y[1+cog207)]({1—r{2) =0,
k
‘ 2—3—|=0. (33 (39
N 2
— o120+ y[1+c0g2Q7)](—ri+2r%¢,)=0,
from Eq. (28). Then, we obtain dr? Lot 1ot 209N £2)
K _ 2 34 where the small parametgris defined byy= (3/4)BA%. We
N 3° (34 assume the solution to E(B9) in the form
And, if r=1, thenk/N satisfies the relation §i=a;(7)sin(Q 1) +bi(r)cog 1 7), (40)
PP I U _q Q7)—Qb;(7)sin(Q 41
3NN (35 ar -~ Qai(ncogr) — Qbi(7)sin(7), (41
One of the solutions to this equation is wherei=1,2. If we substitute Eq940) and (41) into Egs.
(39 and average over the peri¢@,T,], we arrive at the
k 1 averaged equations of the form

a 0 2A 4, 0 3yr a
The ratior is equal to 1 ak/N=1/2 and decreases &N dlb 1| —28p O —yr 0 b
increases up t&/N=2/3, above which it increases again. — | "*|_ _—_
Therefore, it may be concluded that the change of the intend7| a, | 4 0 3yr 0 202 || a, |’
sity of parametric instability with varying causes the strong b, —yr 0 —2A,, O b,
k/N dependence of observed in Figs. &) and 11b), and

hence that of the LCE ;. Since the correspondence between (42
N1 and 1k has already been demonstrated, the parametri\%h A A A dA defined
instability which strongly depends on the ratiprovides the f€81a, A1b. Aza, ANAAZ ArE dEliNed a5
essential mechanism responsible for the strkfig depen- A=02—(1+2y), A,p=02—(1+1y),
dence of the stability time scale; in the range 0.5k/N 2 43)
<0.9. As indicated by Eq(34), the four-mode parametric Ap=02—r2(1+3y), Ayuy=02—r%1+y)

a ] .

instability is suppressed &tN=0.67. Therefore, an instabil-

ity caused by the Interaction .betwe(.an thg two mode COMBOg, largest eigenvalugE of the coefficient matrix in Eq.
nents symmetrically far frork is dominant in the range near

k/N=0.67. However, it cannot give rise to a strong instabil- (42 gives an approximate estimate wffor small energy
ity even in a high energy density regime. This explains thed€nsitye. It can be explicitly obtained as

appearance of the stability bandkdiN=0.67. The enhance- 1

ment of instability ak/N=0.5 is well explained by Eq36). 3 —_~ r_3(r)2—2(A . At Aqs Ao )+ 20(A+ +3A
This parametric instability mechanism of the four-mode ap- 2017307~ 2(81ah 1t A2alop) + 2{(A1at 3820)
proximation can explain also the fact that the mode stability 2 B N 1/21/2
depends ork/N, but not onk, because the ratiois a func- X(Azat3A1p) (1)% + (Arad 1o Aalon) 2.
tion of k/N. (44)
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In Fig. 12a), \. is plotted as a function af by the dashed
line. A is in good agreement with although a slight dif-
ference is found near=0, where the assumption Eqg0)
and(41) does not give a good approximation. From E2f),
the frequency) can be expanded in powers efas
Q=14+0Q,Be+Q,(Be)*+0(€%) (45)

=1+32Be— 2 (Be)’>+0(€d). (46)

And, using Eq.(30), we can expand the parametgias

y=3Be—7(Be)*+0O(e). (47)

Using Eqgs.(45), (46), and(47), we obtain the expansion of

Eq. (44), which is valid whenr is not close to 1, to the
leading order as

2

Py s 80,-3
Ae=g| 7 (81— )1—r2

1/2
1
- E(89?§+ 160, + 27)(891—3)] (Be)¥+0(e%?),

(48)

of a2 1|
:gi m + 1—6] (BE)SIZ‘F 0(65/2). (49)
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nism responsible for the strorngdN dependence ofy be-
cause the four-mode components odf=k—1, k+1,
|2N—3k+1|, and|2N—3k—1| are even. The same para-
metric instability mechanism with thedependence can be
applied to this case also.

Strongk/N dependence of the mode stability is reason-
ably expected to be generic to a large class of anharmonic
lattice modeldfor instance, thep? lattice, and the Lennard-
Jones lattice in the case that the energy is small enough that
the particles remain below the inflection point of the poten-
tial) because the AVE is always in the form of a set of
coupled Hill equations and parametric instability is the com-
mon origin of instability. Since the parametric instability
mechanism is associated with the detailed structure of the
interaction rule among the normal modes, #i&l depen-
dence of the mode stability may be model dependent.

V. CONCLUSIONS

The stability of normal modes was studied for the FBU-
lattice. This stability depends intricately on the wave number
k/N. We have found that the mode instability is enhanced
intermittently in some specific rangesloiN. In addition, we
have found that normal modes within the stability band re-
main extremely stable when the energy density increases.

The numerical experiments we carried out, possessing
system sizesl in the range 128-512, indicate that there is no
apparentN dependence in the intricatd N-dependence of
the mode stability. This fact coincides with the results ob-
tained by the analysis using the four-mode approximation of

In Fig. 12a), the leading term in the expansion is plotted o AVE. Therefore, it is indicated that the intricate stability

againstr by the dash-dotted line for reference. This analytic

expression clearly shows thﬁ increases rapidly as be-
comes close to 1.

The LCE is approximately related EE as)\lzwkfE in

properties persist even in the thermodynamic liit oo,

We investigated the mode stability by means of the linear
stability analysis of the relevant orbits. Close relation be-
tween the stability time scaleg and the linear stability was

the regions where the four-mode parametric instability isestablished. We proposed the AVE as a theoretical tool for
dominant, i.e., in the peaks of the LCE situated on both sidestability analysis and confirmed its reliability by comparing
of the stability band. Therefore, the above expression showthe largest exponential growth rates of the variations be-
that the LCE increases in proportional &2 in those re- tween the true orbits generated by the equations of motion
gions. It should be noted that the expansion coefficienfs of and the pseudoperiodic orbits. The stability analysis based on
are contained in the leading term in E¢8), particularly in  the AVE shows that the stroridN dependence of the mode
ther-dependent term. This implies that the frequency shift ofstability found in the numerical experiments can be under-
the initially excited mode due to the nonlinearity plays anstood in terms of the linear stability along the pseudoperiodic
important role in thek/N dependence of the LCE and sub- orbits.
sequently in that of the mode stability, since the main feature In order to facilitate theoretical study of the mechanism
of the k/N dependence of the LCE is well described by thethat causes the strongN dependence of the mode stability,
four-mode approximation of the AVE. Therefore, one mustwe introduced the four-mode approximation of the AVE,
take into account the frequency shift when studying thewhich was obtained by truncating the other modes less im-
mode stability. portant. The four-mode approximation consists of the two
At the end of this section, we mention some remarks. Wanode components the indices of which are next to the ini-
note that odd and even mode components are never coupléelly excited mode’s wave number and the other two that are
in Eq. (25) because of the nature of the functibn That is,  directly coupled to them through the interaction rleThe
the tangent subspace of odd components and that of evdrequencies of the former pair of mode components are ap-
components are completely separated. As mentioned beforpfoximately equal taw,= 2sin(zk/2N) and those of the latter
orbits are constrained on the submanifold spanned by the odghir are approximately equal ®@=2sin(@|2N—3k|/2N). It
modes’ coordinates for all time under rigorous single-modewvas shown that the parametric instability that depends on the
excitation of an odd mode. Correspondingly, the stabilityratio of the above two frequenciess o/ wy, is the essential
time scalery is related to the stability properties in the odd mechanism causing the strokRgN dependence of the mode
tangent subspace. In this case, parametric instability amonstability in the range 08k/N<0.9: the enhancement of the
the four odd mode components af=k—2, k+2, |2N mode instability neak/N=0.5 is attributed to the strong
—3k+2|, and|2N—3k—2| provides the essential mecha- parametric instability occurring whear=1, while the appear-
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ance of the stability band nefN=0.67 is attributed to the when studying the mode stability.

suppression of the parametric instability occurring whien Since the parametric instability mechanism is the com-
=0. The analytical result obtained by the averaging methodnon origin of the instability in many models, it is expected
shows that the frequency shift in the initially excited modethat the strongk/N dependence of the mode stability we
oscillation plays an important role in théN dependence of have observed in the present study is generic and observable
the LCE and subsequently in that of the mode stability, im-in the other anharmonic lattice models although the type of
plying that one must take into account the frequency shifk/N dependence is model dependent.
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